4.5 Article

Nonlinear robust control of integrated vehicle dynamics

期刊

VEHICLE SYSTEM DYNAMICS
卷 50, 期 2, 页码 247-280

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00423114.2011.578217

关键词

GCC; Lagrange's system; passivity; adaptive control; H-infinity control; L-2 gain

向作者/读者索取更多资源

A new methodology to design the vehicle GCC (global chassis control) nonlinear controller is developed in this paper. Firstly, to handle the nonlinear coupling between sprung and unsprung masses, the vehicle is treated as a mechanical system of two-rigid-bodies which has 6 DOF (degree of freedom), including longitudinal, lateral, yaw, vertical, roll and pitch dynamics. The system equation is built in the yaw frame based on Lagrange's method, and it has been proved that the derived system remains the important physical properties of the general mechanical system. Then the GCC design problem is formulated as the trajectory tracking problem for a cascade system, with a Lagrange's system interconnecting with a linear system. The nonlinear robust control design problem of this cascade interconnected system is divided into two H-infinity control problems with respect to the two sub-systems. The parameter uncertainties in the system are tackled by adaptive theory, while the external uncertainties and disturbances are dealt with the H-infinity control theory. And the passivity of the mechanical system is applied to construct the solution of nonlinear H-infinity control problem. Finally, the effectiveness of the proposed controller is validated by simulation results even during the emergency manoeuvre.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据