4.5 Article

Contact fatigue analysis of a dented surface in a dry elastic-plastic circular point contact

期刊

TRIBOLOGY LETTERS
卷 29, 期 2, 页码 139-153

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11249-007-9291-0

关键词

fatigue; contact modeling; elastic-plastic contact; Dang Van criterion; debris denting; contaminated lubricant; rolling contact fatigue

向作者/读者索取更多资源

The present article proposes a methodology for the computational analysis of damage induced in the vicinity of dents in a dry circular point contact under repeated rolling. The failure risk is evaluated through the use of the Dang Van multiaxial fatigue criterion. The dent is a typical surface defect encountered in rolling element bearings when operating in contaminated environments. It is usually created by a solid particle not removed by seals or filters when passing through an EHL conjunction. Since local plasticity occurs when the debris is first entrapped between the contacting surfaces, and later when the resulting dents are subjected to moving contact load, the elastic-plastic behavior of the material should be captured by the model. First, the dent shape and the subsurface stress and strain fields produced by the presence of a spherical particle are obtained by the finite element method. Second, the rolling of the load over the surface defect is simulated using a semi-analytical elastic-plastic code. The simulations are carried out for two different debris materials, both ductile but one significantly softer than the contacting surfaces, i.e., made of stainless steel 316L, the other one being made of bearing steel AISI 52100 similar to the contacting surfaces. The dent shape and initial stress and strain states are first presented. Subsequent stress and strain states after a few rolling cycles are then presented. Finally the effects of the coefficient of friction, presence of residual stress, and contact load magnitude are highlighted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据