4.7 Article

Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency

期刊

出版社

ELSEVIER
DOI: 10.1016/j.algal.2015.05.021

关键词

Biorefinery; Macroalgae cultivation; Off-shore biomass; Total energy balance biofuels

资金

  1. TAU Center for Innovation in Transportation

向作者/读者索取更多资源

Biorefineries aim to provide sustainable production of food and generation of low carbon energy in the next decades. Current strategies for biorefinery reply mostly on the classic terrestrial agriculture for biomass production. However, land availability, competition with food crops and total energy balance are challenging limiting factors for terrestrial bioenergy crop production. Off-shore macroalgae production could provide alternative, sustainable feedstocks for biorefineries without competition with food crops. Increasing the yields of off-shore macroalgae cultivation systems could further improve the total energy balance of the marine biorefineries. In this work, based on the fundamental principle of timing differences between light harvesting and carbon fixation in algae, we developed a theoretical framework for increasing the yields of off-shore macroalgae biomass using external mechanical mixing. We show that for a given physiological parameter of macroalgae light harvesting and carbon fixation, mixing could allow for increase of the total energy gain by two orders of magnitude. The overall biorefinery to biofuel efficiency, however, is constrained by drag and macroalgae thallus size. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据