4.5 Article

Antioxidative responses and morpho-anatomical adaptations to waterlogging in Sesbania virgata

期刊

TREES-STRUCTURE AND FUNCTION
卷 27, 期 3, 页码 717-728

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-012-0827-z

关键词

Flooding; Antioxidative responses; Morphology; Anatomy

类别

资金

  1. National Council for Scientific and Technological Development (CNPq)
  2. Foundation for Research Support of Minas Gerais (FAPEMIG)

向作者/读者索取更多资源

Sesbania virgata (Leguminosae) is tolerant of long periods of soil inundation. However, its morphological adaptations to anoxia and its response to possible damage from oxidative stress are still unknown. Here, we provide new information that helps to explain the ability of S. virgata plants to grow in flooded environments. Plants containing six expanded leaves were placed in masonry tanks and were subjected to the following conditions: control (well watered), soil waterlogging (water to the setup level of 1 cm above the soil surface-roots and parts of the stems flooded), and complete submergence (whole plant flooded). Plants exposed to flooding (soil waterlogging and complete submergence) significantly increased their production of hydrogen peroxide (H2O2), indicating the extent of oxidative injury posed by stress conditions. We demonstrate that plants exposed to flooding develop an efficient scavenger of ROS (generated during stress) in the roots through the coordinated action of nonenzymatic ascorbic acid (Asc) and dehydroascorbate (DHA) as well as the enzymatic antioxidants superoxide dismutase (SOD), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) that are present in the tissues. Moreover, we observed the development of morpho-anatomical structures such as adventitious roots, lenticels, and cracks in the stem of plants under soil waterlogging. The secondary root of plants under soil waterlogging showed a thinner cortex and larger number of elements of small diameter vessels. Numerous aerenchymas were observed in the newly formed in the adventitious roots. We conclude that these antioxidative responses and morpho-anatomical adaptations in the roots are part of a suite of adaptations that allow S. virgata plants to survive long periods of flooding, notably under waterlogged conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据