4.2 Article

Identifying and genotyping transgene integration loci

期刊

TRANSGENIC RESEARCH
卷 17, 期 5, 页码 979-983

出版社

SPRINGER
DOI: 10.1007/s11248-008-9190-7

关键词

transgene; genotyping; insertion site; inverse PCR; Factor X; FISH

资金

  1. NIH [HL073750]
  2. Indiana Genetics Initiative (INGEN)

向作者/读者索取更多资源

The random germline integration of genetically engineered transgenes has been a powerful technique to study the role of particular genes in variety of biological processes. Although the identification of the transgene insertion site is often not essential for functional analysis of the transgene, identifying the site can have practical benefit. Enabling one to distinguish between animals that are homozygous or hemizygous for the transgene locus could facilitate breeding strategies to produce animals with a large number of genetic markers. Furthermore, founder lines generated with the same transgene construct may exhibit different phenotypes and levels of transgene expression depending on the site of integration. The goal of this report was to develop a rapid protocol for the identification and verification of transgene insertion sites. To identify host genomic sequences at the coagulation Factor X transgene integration site, DNA from a tail snip of the transgenic mouse was digested with NcoI and circularized using T4 DNA ligase. Using appropriately positioned PCR primers annealing to a transgene fragment distal to a terminal transgene restriction site (NcoI), one could amplify a fragment containing the transgene terminal region and extending into the flanking genomic sequence at the insertion site. DNA sequence determination of the amplicon permitted identification of the insertion site using a BLASTN search. FISH analysis of a metaphase spread of primary fibroblasts derived from the transgenic mouse was consistent with the identification of insertion site near the end of mouse chromosome 14. Identification of transgene insertion sites will facilitate genotyping strategies useful for the construction of mice with multiple engineered genetic markers and to distinguish among different founder lines generated by the same transgene. Furthermore, identification of the insertion site is necessary to analyze unexpected phenotypes that might be caused by insertional inactivation of an endogenous gene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据