4.4 Article

A particle-filtering approach for on-line fault diagnosis and failure prognosis

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0142331208092026

关键词

failure prognosis; fault detection; fault identification; particle filtering

向作者/读者索取更多资源

This paper introduces an on-line particle-filtering (PF)-based framework for fault diagnosis and failure prognosis in non-linear, non-Gaussian systems. This framework considers the implementation of two autonomous modules. A fault detection and identification (FDI) module uses a hybrid state-space model of the plant and a PF algorithm to estimate the state probability density function (pdf) of the system and calculates the probability of a fault Condition in real-time. Once the anomalous condition is detected, the available state pdf estimates are used as initial conditions in prognostic routines. The failure prognostic module, on the other hand, predicts the evolution in time of the fault indicator and computes the pdf of the remaining useful life (RUL) of the faulty subsystem, using a non-linear state-space model (with unknown time-varying parameters) and a PF algorithm that updates the current state estimate. The Outcome of the prognosis module provides information about the precision and accuracy of long-term predictions, RUL expectations and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary gear plate are used to validate the proposed approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据