4.1 Article

Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density and Percent Lipids

期刊

TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY
卷 137, 期 5, 页码 1519-1529

出版社

WILEY
DOI: 10.1577/T07-185.1

关键词

-

资金

  1. National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory (NOAA-GLERL)
  2. NOAA-GLERL [1470]

向作者/读者索取更多资源

We evaluated bioelectrical impedance analysis (BIA) as a nonlethal means of predicting energy density and percent lipids for three fish species: yellow perch Perca flavescens, walleye Sander vitreus, and lake whitefish Coregonus clupeaformis. Although models that combined BIA measures with fish wet mass provided strong predictions of total energy, total lipids, and total dry mass for whole fish, including BIA provided only slightly better predictions than using fish mass alone. Regression models that used BIA measures to directly predict the energy density or percent lipids of whole fish were generally better than those using body mass alone (based on Akaike's information criterion). However, the goodness of fit of models that used BIA measures varied widely across species and at best explained only slightly more than one-half the variation observed in fish energy density or percent lipids. Models that combined BIA measures with body mass for prediction had the strongest correlations between predicted and observed energy density or percent lipids for a validation group of fish, but there were significant biases in these predictions. For example, the models underestimated energy density and percent lipids for lipid-rich fish and overestimated energy density and percent lipids for lipid-poor fish. A comparison of observed versus predicted whole-fish energy densities and percent lipids demonstrated that models that incorporated BIA measures had lower maximum percent error than models without BIA measures in them, although the errors for the BIA models were still generally high (energy density: 15-18%; percent lipids: 82-89%). Considerable work is still required before BIA can provide reliable predictions of whole-fish energy density and percent lipids, including understanding how temperature, electrode placement, and the variation in lipid distribution within a fish affect BIA measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据