4.5 Article

Inhibition by rotenone of mesencephalic neural stem-cell migration in a neurosphere assay in vitro

期刊

TOXICOLOGY IN VITRO
卷 24, 期 2, 页码 552-557

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2009.11.005

关键词

Rotenone; Neural stem cell; Neurosphere; Migration; Proliferation; Cell death

资金

  1. National Institute for Environmental Studies (NIES) [12316, 0607AF973]
  2. KAKENHI [21590676]
  3. Grants-in-Aid for Scientific Research [21590676] Funding Source: KAKEN

向作者/读者索取更多资源

Parkinson disease is an age-related neurodegenerative disorder. Although the underlying pathophysiological mechanisms are incompletely understood, it has been suggested that environmental origins of sporadic Parkinson disease occur early in life. Here we examined the in vitro effects of the environmental dopaminergic toxin rotenone on neural stem cells, derived from the rat E16 mesencephalon. The neurospheres were cultured on the uncoated glass dishes. Cells emerged from the neurospheres and migrated along the radial axis. The migrating populations comprised cells that were positive for nestin, microtubule-associated proteins, and glial fibrillary acidic protein. Exposure to rotenone inhibited cell migration, decreased proliferative cells in a dose-dependent manner, and increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Quantitative analysis revealed a linear function between the inhibition of migration and the rotenone concentration. Thus, we showed for the first time that rotenone exerted inhibitory effects on the migration as well as the proliferation of neural stem cells in vitro. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Toxicology

Assessment of the utility of the novel Phenion® full thickness human skin model for detecting the skin irritation potential of antimicrobial cleaning products

Kathryn Page, Walter Westerink, Kristie Sullivan, Thomas McDonald, Clive Roper

Summary: This study developed a new method to assess the skin irritation of antimicrobial cleaning products. The method utilized a more human-like model and demonstrated its effectiveness through comparison with in vivo rabbit skin irritation data.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

In vitro anticancer effects of recombinant anisoplin through activation of SAPK/JNK and downregulation of NFκB

Arupam Patra, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh, Gurvinder Kaur Saini

Summary: This study successfully produced recombinant anisoplin and demonstrated its significant anti-cancer effect and ability to induce apoptosis in breast cancer cells. The activation of related signaling pathways may be the key to cell death.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Life cell imaging of amiodarone sequestration into lamellar bodies of alveolar type II cells

Thomas Haller, Alexander Jesacher, Alberto Hidalgo, Christina Schmidt

Summary: This study used live cell imaging to observe the accumulation of amiodarone in primary rat alveolar type II cells, and found that it specifically accumulates in lamellar bodies. The uptake is rapid, while storage is persistent. The main mechanisms for intracellular bioaccumulation of amiodarone are proposed to be passive diffusion, ion-trapping, and lipophilic interactions.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Cucurbitacin B and erastin co-treatment synergistically induced ferroptosis in breast cancer cells via altered iron-regulating proteins and lipid peroxidation

Filiz Bakar-Ates, Erva Ozkan

Summary: This study investigated the ferroptotic effect of CuB in breast cancer cells and evaluated its combination with erastin, a ferroptosis inducer. The results showed that the combination treatment significantly activated the ferroptotic pathways and altered the expression of iron-related proteins in breast cancer cells.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

The use of in silico molecular modelling to screen potential estrogen mimics as part of medicines and agrochemicals development and product license applications.

Rachel Z. Bennie, Ian C. Shaw

Summary: Estrogen mimics are synthetic and naturally occurring compounds that can interact with estrogen receptors in animals. In vitro transactivation reporter gene assay and in silico molecular modelling can be used to predict the mimicry of these compounds, reducing reliance on animal studies.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Impacts of high-dose riboflavin on cytotoxicity, antioxidant, growth, reproductive gene expressions, and genotoxicity in the rainbow trout gonadal cells

Sevda Isik, Semra Cicek

Summary: This study found that high doses of riboflavin can cause cytotoxicity in rainbow trout gonad cells and affect the transcriptional expressions of antioxidant enzymes and growth and reproductive genes, potentially leading to DNA damage and cell death.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

m-Cresol,a pesticide intermediate, induces hepatotoxicity and behavioral abnormalities in zebrafish larvae through oxidative stress, apoptosis

Ying Wang, Jie Wu, Mengqi Wan, Dou Yang, Fasheng Liu, Kehao Li, Manxin Hu, Yuanyuan Tang, Huiqiang Lu, Shouhua Zhang, Yuanzhen Xiong

Summary: m-Cresol is commonly used as an intermediate for pesticides and other industrial applications. This study investigated the hepatotoxicity of m-cresol using zebrafish larvae and explored its molecular mechanisms. The results suggest that m-cresol may induce liver damage in zebrafish larvae through oxidative stress and cell apoptosis pathways.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Utilizing primary human airway mucociliary tissue cultures to model ramifications of chronic E-cigarette usage

Vincent J. Manna, Shannon Dwyer, Vanessa Pizutelli, Salvatore J. Caradonna

Summary: The widespread use of electronic cigarettes and the emergence of a new illness have raised concerns about the effects of e-cigarette vapor on respiratory tissues. Researchers have developed a simple device to mimic the response of human airway tissue after long-term exposure to e-cigarette vapor, and have identified differences in the effects of different vapor compositions on airway tissue.

TOXICOLOGY IN VITRO (2024)