4.7 Article

Effect of β-naphthoflavone on AhR-regulated genes (CYP1A1, 1A2, 1B1, 2S1, Nrf2, and GST) and antioxidant enzymes in various brain regions of pig

期刊

TOXICOLOGY
卷 265, 期 3, 页码 69-79

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2009.09.010

关键词

Pig CYPs; Pig Nrf2; Brain CYPs; Brain antioxidant enzymes; beta-Naphthoflavone induction; AhR

向作者/读者索取更多资源

The constitutive and inducible expression of aryl hydrocarbon receptor (AhR) and of the AhR-regulated genes coding for CYP1A1, CYP1A2, CYP1B1, CYP2SI, and Nrf2 was investigated by real-time or traditional PCR in cerebral areas (cortex, cerebellum, midbrain, and hippocampus), blood-brain interfaces (meninges and brain microvessels) and liver obtained from control pigs and from pigs treated with beta-naphthoflavone (beta NF), a potent AhR agonist. The enzymatic activities of ethoxyresorufin-O-deethylase (EROD), and methoxyresorufin-O-deethylase (MEROD), marker for CYP1A1 and CYP1A2, the GST and various antioxidant enzymes (catalase, superoxide dismutase, GSSG-reductase, and GSH-peroxidase) were also determined in the same CNS regions. The AhR, CYP1A1, CYP1A2, CYP1B1, Nrf2 mRNAs were detected, although at different extent, in all the CNS regions, while CYP2S1 mRNA was detected only in midbrain. In the blood-brain interfaces, the constitutive basal expression of AhR and CYP1A1 was comparable to the hepatic one and even higher for CYP1B1 and Nrf2. The treatment with beta NF determined the induction of CYP1A1 and 1B1 (but not of AhR, CYP1A2, and Nrf2) mRNA levels in various CNS areas; notably, CYP1A1 mRNA was increased to about 300-fold in the microvessels. The analysis of enzymatic activities revealed that EROD, but not MEROD, was induced in microsomes but not in mitochondria of all the CNS areas. However, the mitochondrial EROD activities were comparable (in midbrain, meninges) or higher (in cortex, cerebellum, hippocampus) than the microsomal ones, suggesting an important metabolic function of CYP1A1 in this subcellular localization. The activities of GST and antioxidant enzymes were detected in all CNS tissues, with levels lower than the hepatic ones, but found quite evenly distributed and marginally affected by beta NF treatment. The high expression of metabolic enzymes found in blood-brain interfaces could represent a very important defence toward toxins of CNS. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据