4.5 Article

Understanding the Villain: DMBA-Induced Preantral Ovotoxicity Involves Selective Follicular Destruction and Primordial Follicle Activation through PI3K/Akt and mTOR Signaling

期刊

TOXICOLOGICAL SCIENCES
卷 123, 期 2, 页码 563-575

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfr195

关键词

DMBA; fertility; ovary; primordial follicle; PI3K; Akt; mTOR signaling

资金

  1. National Health and Medical Research Council [510735]
  2. Australian Research Council
  3. Hunter Medical Research Institute
  4. Newcastle Permanent Building Society Charitable Trust
  5. Australian Postgraduate Award

向作者/读者索取更多资源

7,12-Dimethylbenz-[a]anthracene (DMBA) is an environmental carcinogen which has a potent ovotoxic affect on rat and mouse ovaries, causing complete follicular depletion resulting in premature ovarian failure. Although the overall effects of DMBA on ovarian folliculogenesis are well known, little is known about the exact molecular mechanisms behind its ovotoxicity. In this study, we characterized the mechanisms behind DMBA-induced ovotoxicity in immature follicles. Microarray analysis of neonatal mouse ovaries exposed to DMBA in vitro revealed a multilayered mechanism of DMBA-induced neonatal ovotoxicity involving a distinct cohort of genes and ovarian signaling pathways primarily associated with follicular atresia, tumorigenesis, and follicular growth. Histomorphological and immunohistological analysis supported the microarray data, showing evidence of primordial follicle activation and preantral follicle atresia both in vitro and in vivo. Further immunohistological analysis identified increased Akt1 phosphorylation, mTOR activation, and decreased FOXO3a expression in DMBA-treated primordial oocytes. Our results reveal a novel mechanism of DMBA-induced preantral ovotoxicity involving selective immature follicle destruction and primordial follicle activation involving downstream members of the PI3K/Akt and mTOR signaling pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据