4.5 Article

Bisphenol A Disrupts Notch Signaling by Inhibiting Gamma-Secretase Activity and Causes Eye Dysplasia of Xenopus laevis

期刊

TOXICOLOGICAL SCIENCES
卷 108, 期 2, 页码 344-355

出版社

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfp025

关键词

bisphenol A; notch signaling; Xenopus laevis embryo; neurula

资金

  1. Japan Society for the Promotion of Science
  2. Ministry of Education, Science, Culture, Sports and Technology of Japan

向作者/读者索取更多资源

Bisphenol A (BPA) is being recognized as an endocrine-disrupting chemical (EDC). Recently, several reports indicated that BPA affects the central nervous system (CNS) during embryonic development. However, the molecular mechanism of BPA in the CNS is not well known. Here, we show that BPA affected Notch signaling by inhibiting the activity of the Notch intracellular domain (NICD) cleavage-related enzyme, gamma-secretase (gamma-secretase), at the neurula stage of the Xenopus laevis. BPA caused various morphologic aberrations including scoliosis, eye dysplasia, and loss of pigments in the X. laevis tadpole. These abnormalities were seen whenever BPA was used at the neurula stage. In addition, the expression levels of several marker mRNAs at the neurula stage were investigated by RT-PCR, and we found that the mRNAs expression of ectodermal marker, Pax6, CNS marker, Sox2, and neural crest marker, FoxD3, were decreased by treatment with BPA. These genes contribute to the neural differentiation at the neurula stage, and also the downstream factors of Notch signaling. Injection of NICD but not a Notch ligand, delta 1, rescued the abnormalities caused by BPA. We subsequently assayed the inhibition of the activities of NICD cleavage-related enzymes, tumor necrosis factor alpha converting enzyme, and gamma-secretase, by BPA and found that BPA inhibited the gamma-secretase activity. Furthermore, we expressed presenilin, a main component of gamma-secretase, in Escherichia coli and found the direct binding of BPA with presenilin. These results suggest that BPA affected the neural differentiation by inhibiting gamma-secretase activity, leading to neurodevelopmental abnormalities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据