4.6 Article

Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 11, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1004276

关键词

-

资金

  1. National Institutes of Health [R01GM093937]
  2. Intramural Research Program of the National Library of Medicine at the U.S. National Institutes of Health

向作者/读者索取更多资源

A new methodology termed Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) was developed to predict the changes of the binding free energy caused by mutations. The method utilizes 3D structures of the corresponding protein-protein complexes and takes advantage of both approaches: sequence- and structure-based methods. The method has two components: a MM/PBSA-based component, and an additional set of statistical terms delivered from statistical investigation of physico-chemical properties of protein complexes. While the approach is rigid body approach and does not explicitly consider plausible conformational changes caused by the binding, the effect of conformational changes, including changes away from binding interface, on electrostatics are mimicked with amino acid specific dielectric constants. This provides significant improvement of SAAMBE predictions as indicated by better match against experimentally determined binding free energy changes over 1300 mutations in 43 proteins. The final benchmarking resulted in a very good agreement with experimental data (correlation coefficient 0.624) while the algorithm being fast enough to allow for large-scale calculations (the average time is less than a minute per mutation).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据