4.2 Article

Matrix Dimensions, Stiffness, and Structural Properties Modulate Spontaneous Chondrogenic Commitment of Mouse Embryonic Fibroblasts

期刊

TISSUE ENGINEERING PART A
卷 20, 期 7-8, 页码 1145-1155

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2013.0369

关键词

-

资金

  1. IQS-School of Engineering, Bioengineering Department Budget
  2. SUR of DEC of Catalan Government
  3. ESF [2013FI_B2 00094]
  4. Austrian Agency for International Cooperation in Education and Research

向作者/读者索取更多资源

Experimental models for cartilage and bone development have been studied in order to understand the biomechanical and biological parameters that regulate skeletal tissue formation. We have previously described that when mouse embryonic fibroblasts (MEFs) were cultured in a three-dimensional (3D)-soft self-assembling peptide nanofiber, the system engaged in a spontaneous process of cartilage-like formation evidenced by the expression of Sox9, Collagen type II, and proteoglycans. In the present work, we studied the influence that matrix mechanical properties have in modulating lineage commitment in an in vitro model of chondrogenesis. This effect was observed only when MEFs were cultured at low elastic modulus values (similar to 0.1 kPa). Interestingly, under these conditions, the system expressed the chondrogenic inductor BMP4 and its antagonist Noggin. On the other hand, at higher elastic modulus values (similar to 5 kPa), the system expressed Noggin but not BMP4, and did not engage in chondrogenesis, which suggest that the balance between bone morphogenetic protein/Noggin could be implicated in the chondrogenic process. Finally, no evidence of hypertrophy was detected under the conditions tested (by assessing expression of Collagen type X and Runx2) unless we challenged the system by co-culturing it with endothelial cells. Importantly, under these new conditions, the system underwent spontaneous matrix calcium mineralization. These results suggest that the 3D-system described here is sensitive to respond to environmental changes such as biomechanical and biological cues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据