4.2 Article

Fabrication of Electrospun Poly (Lactide-co-Glycolide)-Fibrin Multiscale Scaffold for Myocardial Regeneration In Vitro

期刊

TISSUE ENGINEERING PART A
卷 19, 期 7-8, 页码 849-859

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2012.0374

关键词

-

资金

  1. Department of Science and Technology through the National Nanoscience and Nanotechnology Initiative

向作者/读者索取更多资源

Myocardial tissue engineering is one of the most promising treatment strategies to restore heart function after a massive heart attack. The biomaterials, cells, and scaffold design play important roles in engineering of heart tissue. In this study, we have developed a fibrin-based multiscale electrospun composite scaffold for myocardial regeneration. Fibrin is the natural wound-healing matrix having angiogenic potential and comprehensively used for tissue engineering applications. It provides a natural environment for cell attachment, migration, and proliferation. Morphological, chemical, and mechanical characterization of the scaffolds was done by scanning electron microscopy, fibrin-specific phosphotungstic acid hematoxylin staining, and mechanical testing. The fiber diameters of fibrin nanofibers range from 50 to 300nm and that of poly (lactide-co-glycolide) microfibers range from 2 to 4 mu m, which mimics the structural hierarchy of native myocardial tissue. Our results indicate that this scaffold enhances the differentiation of mesenchymal stem cells into cardiomyocytes. The cardiac phenotype of the cells was confirmed by the presence of cardiac-specific proteins like alpha-sarcomeric actinin, troponin, tropomyosin, desmin, and atrial natriuretic peptide Estimation of D-Dimer in the culture supernatant for 2 weeks and analysis of scaffold for 3 weeks of in vitro culture of cardiomyocytes indicated the degradation of fibrin and presence of newly synthesized collagen respectively. Our results demonstrate the promising potential of this scaffold for myocardial tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据