4.7 Article

Resource Theory of Steering

期刊

PHYSICAL REVIEW X
卷 5, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.5.041008

关键词

-

资金

  1. Alexander von Humboldt Foundation
  2. EU [299141]

向作者/读者索取更多资源

We present an operational framework for Einstein-Podolsky-Rosen steering as a physical resource. For arbitrary-dimensional bipartite systems composed of a quantum subsystem and a black-box device, we show that local operations assisted by one-way classical communication (1W-LOCCs) from the quantum part to the black box cannot create steering. Based on this, we build a resource theory of steering with 1W-LOCCs as the free operations. We introduce the notion of convex steering monotones as the fundamental axiomatic quantifiers of steering. As a convenient example thereof, we present the relative entropy of steering. In addition, we prove that two previously proposed quantifiers, the steerable weight and the robustness of steering, are also convex steering monotones. To end up with for minimal-dimensional systems, we establish, on the one hand, necessary and sufficient conditions for pure-state steering conversions under stochastic 1W-LOCCs and prove, on the other hand, the nonexistence of steering bits, i.e., measure-independent maximally steerable states from which all states can be obtained by means of the free operations. Our findings reveal unexpected aspects of steering and lay the foundations for further research, with potential implications in Bell nonlocality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据