4.2 Article

Xenopus Laevis as a Novel Model to Study Long Bone Critical-Size Defect Repair by Growth Factor-Mediated Regeneration

期刊

TISSUE ENGINEERING PART A
卷 17, 期 5-6, 页码 691-701

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2010.0123

关键词

-

资金

  1. W.M. Keck Foundation
  2. Gauthier Exploratory Fund
  3. Livermore National Lab
  4. Grainger Foundation
  5. National Science Foundation [CMMI 0927909, ECCS-1002351]
  6. Directorate For Engineering
  7. Div Of Civil, Mechanical, & Manufact Inn [0927909] Funding Source: National Science Foundation
  8. Div Of Electrical, Commun & Cyber Sys
  9. Directorate For Engineering [1002351] Funding Source: National Science Foundation

向作者/读者索取更多资源

We used the tarsus of an adult Xenopus laevis frog as an in vivo load-bearing model to study the regeneration of critical-size defects (CSD) in long bones. We found the CSD for this bone to be about 35% of the tarsus length. To promote regeneration, we implanted biocompatible 1,6 hexanediol diacrylate scaffolds soaked with bone morphogenetic proteins-4 and vascular endothelial growth factors. In contrast to studies that use scaffolds as templates for bone formation, we used scaffolds as a growth factor delivery vehicle to promote cartilage-to-bone regeneration. Defects in control frogs were filled with scaffolds lacking growth factors. The limbs were harvested at a series of time points ranging from 3 weeks to 6 months after implantation and evaluated using micro-computed tomography and histology. In frogs treated with growth factor-loaded scaffolds, we observed a cartilage-to-bone regeneration in the skeletal defect. Five out of eight defects were completely filled with cartilage by 6 weeks. Blood vessels had invaded the cartilage, and bone was beginning to form in ossifying centers. By 3 months, these processes were well advanced, and extensive ossification was observed in 6-month samples. In contrast, the defects in control frogs showed only formation of fibrous scar tissue. This study demonstrates the utility of a Xenopus model system for tissue engineering research and that the normal in vivo mechanism of endochondral bone development and fracture repair can be mimicked in the repair of CSD with scaffolds used as growth factor delivery mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据