4.2 Article

Metabolic Activities and Chondrogenic Differentiation of Human Mesenchymal Stem Cells Following Recombinant Adeno-Associated Virus-Mediated Gene Transfer and Overexpression of Fibroblast Growth Factor 2

期刊

TISSUE ENGINEERING PART A
卷 17, 期 15-16, 页码 1921-1933

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2011.0018

关键词

-

资金

  1. German Research Society (Deutsche Forschungsgemeinschaft DFG) [CU 55/1-1, 1-2, 1-3]
  2. German Osteoarthritis Foundation (Deutsche Arthrose-Hilfe DAH)

向作者/读者索取更多资源

The genetic manipulation of bone marrow-derived mesenchymal stem cells (MSCs) is an attractive approach to produce therapeutic platforms for settings that aim at restoring articular cartilage defects. Here, we examined the effects of recombinant adeno-associated virus (rAAV)-mediated overexpression of human fibroblast growth factor 2 (hFGF-2), a mitogenic factor also known to influence MSC differentiation, upon the proliferative and chondrogenic activities of human MSCs (hMSCs) in a three-dimensional environment that supports chondrogenesis in vitro. Prolonged, significant FGF-2 synthesis was noted in rAAV-hFGF-2-transduced monolayer and aggregate cultures of hMSCs, leading to enhanced, dose-dependent cell proliferation compared with control treatments (rAAV-lacZ transduction and absence of vector administration). Chondrogenic differentiation (proteoglycans, type-II collagen, and SOX9 expression) was successfully achieved in all types of aggregates, without significant difference between conditions. Most remarkably, application of rAAV-hFGF-2 reduced the expression of type-I and type-X collagen, possibly due to increased levels of matrix metalloproteinase-13, a key matrix-degrading enzyme. FGF-2 overexpression also decreased mineralization and the expression of osteogenic markers such as alkaline phosphatase, with diminished levels of RUNX-2, a transcription factor for osteoblast-related genes. Altogether, the present findings show the ability of rAAV-mediated FGF-2 gene transfer to expand hMSCs with an advantageous differentiation potential for future, indirect therapeutic approaches that aim at treating articular cartilage defects in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据