4.7 Article

Temperature-Independent Fermi Surface in the Kondo Lattice YbRh2Si2

期刊

PHYSICAL REVIEW X
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.5.011028

关键词

-

资金

  1. DFG [VY64/1-3, GE602/2-3, GRK1621]

向作者/读者索取更多资源

Strongly correlated electron systems are one of the central topics in contemporary solid-state physics. Prominent examples for such systems are Kondo lattices, i.e., intermetallic materials in which below a critical temperature, the Kondo temperature T-K, the magnetic moments become quenched and the effective masses of the conduction electrons approach the mass of a proton. In Ce-and Yb-based systems, this so-called heavy-fermion behavior is caused by interactions between the strongly localized 4f and itinerant electrons. A major and very controversially discussed issue in this context is how the localized electronic degree of freedom gets involved in the Fermi surface (FS) upon increasing the interaction between both kinds of electrons or upon changing the temperature. In this paper, we show that the FS of a prototypic Kondo lattice, YbRh2Si2, does not change its size or shape in a wide temperature range extending from well below to far above the single-ion Kondo temperature T-K similar to 25 K of this system. This experimental observation, obtained by means of angle-resolved photoemission spectroscopy, is in remarkable contrast to the widely believed evolution from a large FS, including the 4f degrees of freedom, to a small FS, without the 4f's, upon increasing temperature. Our results explicitly demonstrate a need to further advance in theoretical approaches based on the periodic Anderson model in order to elucidate the temperature dependence of Fermi surfaces in Kondo lattices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据