4.2 Article

In Vitro Regulation of Neural Differentiation and Axon Growth by Growth Factors and Bioactive Nanofibers

期刊

TISSUE ENGINEERING PART A
卷 16, 期 8, 页码 2641-2648

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2009.0414

关键词

-

资金

  1. TATRC
  2. Department of Defense
  3. College of Engineering at Berkeley

向作者/读者索取更多资源

Human embryonic stem cell (ESC)-derived neural cells are a potential cell source for neural tissue regeneration. Understanding the biochemical and biophysical regulation of neural differentiation and axon growth will help us develop cell therapies and bioactive scaffolds. We demonstrated that basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) had different effects on human ESC differentiation into neural cells. EGF was more effective in inducing expression of neuron and glial markers and cell extensions. In addition to biochemical cues, poly(l-lactic acid) scaffolds with aligned nanofibers increased axon growth from ESC-derived neural cells, demonstrating the significant effects of biophysical guidance at nanoscale. To combine the biochemical and biophysical cues, bFGF and EGF were either adsorbed or bound to heparin on nanofibrous scaffolds. EGF, but not bFGF, was effectively adsorbed onto nanofibers. However, adsorbed EGF and bFGF did not effectively enhance axon growth. In contrast, immobilization of bFGF or EGF onto nanofibers using heparin as the adapter molecule significantly promoted axon growth. This study elucidated the effect of bFGF and EGF in neural differentiation and axon growth, and demonstrated a method to immobilize active bFGF and EGF onto aligned nanofibers to promote neural tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据