4.2 Article

Expression of CXC chemokines and their receptors is modulated during chondrogenic differentiation of human mesenchymal stem cells grown in three-dimensional scaffold: Evidence in native cartilage

期刊

TISSUE ENGINEERING PART A
卷 14, 期 1, 页码 97-105

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.a.2007.0121

关键词

-

向作者/读者索取更多资源

Chemokines contribute to the maintenance of cartilage homeostasis. To evaluate the role of CXC chemokines CXCL8 (interleukin-8), CXCL10 (interferon-gamma-inducible protein-10), CXCL12 (stroma-derived factor-1) and CXCL13 (B-cell attracting chemokine-1) and their receptors, respectively CXCR1-2, CXCR3, CXCR4, and CXCR5, during chondrogenic differentiation of human mesenchymal stromal cells (h-MSCs), we used a well-defined in vitro model. Chondrogenic differentiation was analyzed on h-MSCs grown on hyaluronic acid-based biomaterial in the presence or absence of transforming growth factor-beta, and the expression and modulation of CXC chemokines and receptors were evaluated at different time points. Real-time polymerase chain reaction was performed to analyze their expression at the messenger ribonucleic acid (mRNA) level, and immunohistochemistry and enzyme-linked immunosorbent assay were used to evaluate their expression at the protein level. Human articular cartilage biopsies were used to evaluate chemokine and receptor expression in normal tissue. We found no expression of CXCR1, CXCR2, CXCR3, or CXCL10 at the mRNA level. CXCL8 mRNA was down-modulated, whereas at the protein level, we found greater release of this chemokine. CXCR4 and its ligand CXCL12 were down-modulated during chondrogenesis. By contrast, CXCR5 was up-regulated, whereas its ligand CXCL13 was lower. These data were also confirmed on human articular cartilage. These findings show that, during in vitro h-MSC chondrogenic differentiation, chemokine and receptor expression was specifically induced or repressed. This was in line with what the authors also found in normal articular cartilage, suggesting a role in differentiation and maturation of a cartilage-like structure in vitro and consequently the regulation of cartilage homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据