4.6 Article

Intracellular matrix metalloproteinase-2 (MMP-2) regulates human platelet activation via hydrolysis of talin

期刊

THROMBOSIS AND HAEMOSTASIS
卷 111, 期 1, 页码 140-153

出版社

GEORG THIEME VERLAG KG
DOI: 10.1160/TH13-03-0248

关键词

Matrix metalloproteinase; platelet physiology; thrombin; talin

向作者/读者索取更多资源

Matrix metalloproteinase (MMP) activity is generally associated with 1 normal or pathological extracellular processes such as tissue remodelling in growth and development or in tumor metastasis and angiogenesis. Platelets contain at least three MMPs, 1, 2 and 9 that have been reported to stimulate or inhibit agonist-induced platelet aggregation via extracellular signals. The non-selective Zn+2 chelating MMP inhibitor, 1,10-phenanthroline, and the serine protease inhibitor, AEBSF, were found to inhibit all tested agonist-induced platelet aggregation reactions. In vitro analysis demonstrated that 1,10-phenanthroline completely inhibited MMP-1,2,and 9 but had little to no effect on calpain activity while the converse was true with AEBSF. We now demonstrate that MMP-2 functions intracellularly to regulate agonist-induced platelet aggregations via the hydrolytic activation of talin, the presumed final activating factor of glycoprotein (GP)IIb/IIIa integrin (the inside-out signal). Once activated GPIIb/IIIa binds the dimeric fibrinogen molecule required for platelet aggregation. The active intracellular MMP-2 molecule is complexed with JAK 2/STAT 3, as demonstrated by the fact that all three proteins are co-immunoprecipitated with either anti-JAK 2, or anti-STAT 3 antibodies and by immunofluorescence studies. The MMP-2 platelet activation pathway can be synergistically inhibited with the non-selective MMP inhibitor, 1,10-phenanthroline, plus a JAK 2 inhibitor. This activation pathway is distinct from the previously reported calpain-talin activating pathway. The; identification of a new central pathway for platelet aggregation presents new potential targets for drug regulation and furthers our understanding of the complexity of platelet activation mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据