4.7 Article

Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton

期刊

THEORETICAL AND APPLIED GENETICS
卷 126, 期 5, 页码 1405-1418

出版社

SPRINGER
DOI: 10.1007/s00122-013-2061-5

关键词

-

资金

  1. Cotton Incorporated (CA State Support Committee), Cary, NC (ARIS Log) [5303-05-00 0029833]
  2. Cotton Incorporated
  3. University of California Discovery Grant

向作者/读者索取更多资源

Diseases such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represent expanding threats to cotton production. Integrating disease resistance into high-yielding, high-fiber quality cotton (Gossypium spp.) cultivars is one of the most important objectives in cotton breeding programs worldwide. In this study, we conducted a comprehensive analysis of gene action in cotton governing FOV race 4 resistance by combining conventional inheritance and quantitative trait loci (QTL) mapping with molecular markers. A set of diverse cotton populations was generated from crosses encompassing multiple genetic backgrounds. FOV race 4 resistance was investigated using seven parents and their derived populations: three intraspecific (G. hirsutum x G. hirsutum L. and G. barbadense x G. barbadense L.) F-1 and F-2; five interspecific (G. hirsutum x G. barbadense) F-1 and F-2; and one RIL. Parents and populations were evaluated for disease severity index (DSI) of leaves, and vascular stem and root staining (VRS) in four greenhouse and two field experiments. Initially, a single resistance gene (Fov4) model was observed in F-2 populations based on inheritance of phenotypes. This single Fov4 gene had a major dominant gene action and conferred resistance to FOV race 4 in Pima-S6. The Fov4 gene appears to be located near a genome region on chromosome 14 marked with a QTL Fov4-C14 (1) , which made the biggest contribution to the FOV race 4 resistance of the generated F-2 progeny. Additional genetic and QTL analyses also identified a set of 11 SSR markers that indicated the involvement of more than one gene and gene interactions across six linkage groups/chromosomes (3, 6, 8, 14, 17, and 25) in the inheritance of FOV race 4 resistance. QTLs detected with minor effects in these populations explained 5-19 % of the DSI or VRS variation. Identified SSR markers for the resistance QTLs with major and minor effects will facilitate for the first time marker-assisted selection for the introgression of FOV race 4 resistance into elite cultivars during the breeding process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据