4.0 Article

Transient increases in dendritic spine density contribute to dentate gyrus long-term potentiation

期刊

SYNAPSE
卷 66, 期 7, 页码 661-664

出版社

WILEY-BLACKWELL
DOI: 10.1002/syn.21545

关键词

medial perforant path; synaptic plasticity; cytoskeleton; dentate gyrus

资金

  1. Georgia Health Sciences University

向作者/读者索取更多资源

Dendritic spines are the primary sites for excitatory neurotransmission in the adult brain and exhibit changes in their number and morphology with experience. The relationship between spine formation and synaptic activity has been best characterized along the apical dendrites of pyramidal neurons in the hippocampal CA1 subfield. However, less is known about the structural mechanisms at the spine that mediate plasticity in other hippocampal subfields. The dentate gyrus is the predominant point of entry for synaptic input to the hippocampus, and dentate granule cells differ from CA1 pyramidal neurons in terms of their morphology and biophysical properties. In order to understand the structural mechanisms for plasticity in the dentate gyrus, we measured dendritic spine density in hippocampal slice preparations at different intervals following synaptic stimulation. We observed that transient increases in dendritic spine density are detectable 30 min after induction of long-term potentiation (LTP). By 60 min poststimulation, dendritic spine density has returned to basal levels. Both early LTP and enhancements in dendritic spine density could beblocked by destabilizing actin filaments, but not by inhibitors of transcription or protein synthesis. These results indicate that spine formation is a transient event that is required for dentate gyrus LTP. Synapse, 2012. (c) 2011 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据