4.2 Article

Encoding of stoichiometric constraints in the composition depth profile reconstruction from angle resolved X-ray photoelectron spectroscopy data

期刊

SURFACE AND INTERFACE ANALYSIS
卷 43, 期 13, 页码 1581-1604

出版社

WILEY-BLACKWELL
DOI: 10.1002/sia.3753

关键词

maximum entropy method: angle resolved X-ray photoelectron spectroscopy; compositional depth profile; inelastic photoelectron scattering; constrained optimization

向作者/读者索取更多资源

The inversion of angle resolved XPS data is a difficult problem, due to mathematical complexity of accurate model of electron transport, sensitivity to noise and small number of measured points limiting the depth resolution and the accuracy of the calculated depth profiles. Extended maximum entropy model for the calculation of apparent compositions (measured intensity ratios) is presented which allows to encode linear relationship between element concentrations. These can be used to calculate a solution with additional stoichiometric relationships and analyze, simultaneously, signals from several synthetic peak components. The synthetic peak components used in the model can represent various core level energy shifts, which are otherwise difficult to determine unambiguously from the measured signal. Element concentrations linked with stoichiometric relationships are used to identify compound materials with known density and inelastic scattering properties. The new model, thus allows self-consistent recovery of depth profiles using maximum entropy method without the assumption of homogeneous density. The improved accuracy of the recovered depth profiles is demonstrated on the analysis of HfON/SiON overlayers. Various artefacts in the depth profiles obtained with standard maximum entropy model, which assumes constants density are identified. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据