4.8 Article

ADAMTS9-Mediated Extracellular Matrix Dynamics Regulates Umbilical Cord Vascular Smooth Muscle Differentiation and Rotation

期刊

CELL REPORTS
卷 11, 期 10, 页码 1519-1528

出版社

CELL PRESS
DOI: 10.1016/j.celrep.2015.05.005

关键词

-

资金

  1. NIH [HL107147, HD069747]
  2. Morgenthaler fellowship
  3. Sabrina's Foundation

向作者/读者索取更多资源

Despite the significance for fetal nourishment in mammals, mechanisms of umbilical cord vascular growth remain poorly understood. Here, the secreted metalloprotease ADAMTS9 is shown to be necessary for murine umbilical cord vascular development. Restricting it to the cell surface using a gene trap allele, Adamts9(Gt), impaired umbilical vessel elongation and radial growth via reduced versican proteolysis and accumulation of extracellular matrix (ECM). Both Adamts9(Gt) and conditional Adamts9 deletion revealed that ADAMTS9 produced by mesenchymal cells acted non-autonomously to regulate smooth muscle cell (SMC) proliferation, differentiation, and orthogonal reorientation during growth of the umbilical vasculature. In Adamts9(Gt/Gt), we observed interference with PDGFR beta signaling via the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, which regulates cytoskeletal dynamics during SMC rotation. In addition, we observed disrupted Shh signaling and perturbed orientation of the mesenchymal primary cilium. Thus, ECM dynamics is a major influence on umbilical vascular SMC fate, with ADAMTS9 acting as its principal mediator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据