4.7 Article

Stochastic analysis of flux and head moments in a heterogeneous aquifer system

期刊

出版社

SPRINGER
DOI: 10.1007/s00477-011-0459-7

关键词

Stochastic modeling; Flux moments; Upscaling; Boundary effects

向作者/读者索取更多资源

This study investigates the behavior of flux and head in a strongly heterogeneous three-dimensional aquifer system. The analyses relied on data from 520 slug tests together with 38,000 one-foot core intervals lithological data from the site of the General Separations Area in central Savannah River Site, South Carolina, USA. The skewness in the hydraulic conductivity histograms supported the geologic information for the top two aquifers, but revealed stronger clay content, than was reported for the bottom aquifer. The log-normal distribution model described adequately the hydraulic conductivity measurements for all three aquifers although, other distributions described equally well the bottom aquifer measurements. No apparent anisotropy on the horizontal plane was found for the three aquifers, but ratios of horizontal to vertical correlation lengths between 33 and 75 indicated a strong stratification at the site. Three-dimensional Monte Carlo stochastic simulations utilized a grid with larger elements than the support volume of measurements, but of sub-REV (representative elementary volume) dimensions. This necessitated, on one hand, the use of upscaled hydraulic conductivity expressions, but on the other hand did not allow for the use of anisotropic effective hydraulic conductivity expressions (Sarris and Paleologos in J Stoch Environ Res Risk Assess 18: 188-197, 2004). Flux mean and standard deviations components were evaluated on three vertical cross-sections. The mean and variance of the horizontal flux component normal to a no-flow boundary tended to zero at approximately two to three integral scales from that boundary. Close to a prescribed head boundary both the mean and variance of the horizontal flux component normal to the boundary increased from a stable value attained at a distance of about five integral scales from that boundary. The velocity field aOE (c) q(x)> was found to be mildly anisotropic in the top two aquifers, becoming highly anisotropic in the bottom aquifer; aOE (c) q(y)> was anisotropic in all three aquifers with directions of high continuity normal to those of the aOE (c) q(x)> field; finally, aOE (c) q(z)> was highly anisotropic in all three aquifers, with higher continuity along the east-west direction. The mean head field was found to be continuous, despite the high heterogeneity of the underlying hydraulic conductivity field. Directions of high continuity were in alignment with field boundaries and mean flow direction. Conditioning did not influence significantly the expected value of the flux terms, with more pronounced being the effect on the standard deviation of the flux vector components. Conditioning reduced the standard deviations of the horizontal flux components by as much as 50% in the bottom aquifer. Variability in the head cross-sections was affected only marginally, with an average 10% reduction in the respective standard deviation. Finally, the location of the conditioning data did not appear to have a significant effect on the surrounding area, with uniform reduction in standard deviations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据