4.7 Article

Parameter estimation in nonlinear environmental problems

期刊

出版社

SPRINGER
DOI: 10.1007/s00477-010-0395-y

关键词

Markov chain Monte Carlo; Bayesian method; Maximum a posteriori estimation; MCMC convergence

资金

  1. U.S. Department of Defense [ER-1611]
  2. Stanford Center for Computational Earth and Environmental Science

向作者/读者索取更多资源

Popular parameter estimation methods, including least squares, maximum likelihood, and maximum a posteriori (MAP), solve an optimization problem to obtain a central value (or best estimate) followed by an approximate evaluation of the spread (or covariance matrix). A different approach is the Monte Carlo (MC) method, and particularly Markov chain Monte Carlo (MCMC) methods, which allow sampling from the posterior distribution of the parameters. Though available for years, MC methods have only recently drawn wide attention as practical ways for solving challenging high-dimensional parameter estimation problems. They have a broader scope of applications than conventional methods and can be used to derive the full posterior pdf but can be computationally very intensive. This paper compares a number of different methods and presents improvements using as case study a nonlinear DNAPL source dissolution and solute transport model. This depth-integrated semi-analytical model approximates dissolution from the DNAPL source zone using nonlinear empirical equations with partially known parameters. It then calculates the DNAPL plume concentration in the aquifer by solving the advection-dispersion equation with a flux boundary. The comparison is among the classical MAP and some versions of computer-intensive Monte Carlo methods, including the Metropolis-Hastings (MH) method and the adaptive direction sampling (ADS) method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据