4.5 Article

An Injectable Nucleus Pulposus Implant Restores Compressive Range of Motion in the Ovine Disc

期刊

SPINE
卷 37, 期 18, 页码 E1099-E1105

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/BRS.0b013e31825cdfb7

关键词

lumbar spine; hydrogel; compression; nucleus pulposus; implant; mechanics; sheep

资金

  1. Neurosurgery Research and Education Foundation

向作者/读者索取更多资源

Study Design. Investigation of injectable nucleus pulposus (NP) implant. Objective. To assess the ability of a recently developed injectable hydrogel implant to restore nondegenerative disc mechanics through support of NP functional mechanics. Summary of Background Data. Although surgical intervention for low back pain is effective for some patients, treated discs undergo altered biomechanics and adjacent levels are at increased risk for accelerated degeneration. One potential treatment as an alternative to surgery for degenerated disc includes the percutaneous delivery of agents to support NP functional mechanics. The implants are delivered in a minimally invasive fashion, potentially on an outpatient basis, and do not preclude later surgical options. One of the challenges in designing such implants includes the need to match key NP mechanical behavior and mimic the role of native nondegenerate NP in spinal motion. Methods. The oxidized hyaluronic acid gelatin implant material was prepared. In vitro mechanical testing was performed in mature ovine bone-disc-bone units in 3 stages: intact, discectomy, and implantation versus sham. Tested samples were cut axially for qualitative structural observations. Results. Discectomy increased axial range of motion (ROM) significantly compared with intact. Hydrogel implantation reduced ROM 17% (P < 0.05) compared with discectomy and returned ROM to intact levels (ROM intact 0.71 mm, discectomy 0.87 mm, postimplantation 0.72 mm). Although ROM for the hydrogel implant group was statistically unchanged compared with the intact disc, ROM for sham discs, which received a discectomy and no implant, was significantly increased compared with intact. The compression and tension stiffness were decreased with discectomy and remained unchanged for both implant and sham groups as expected because the annulus fibrosus was not repaired. Gross morphology images confirmed no ejection of NP implant. Conclusion. An injectable implant that mimics nondegenerate NP has the potential to return motion segment ROM to normal subsequent to injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据