4.5 Article

An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression

期刊

ACTA MECHANICA SINICA
卷 32, 期 3, 页码 442-455

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10409-015-0489-3

关键词

Rock-like material; Two unparallel fissures; Mechanical parameters; Crack evolution; Acoustic emission (AE)

资金

  1. National Natural Science Foundation of China [51179189]
  2. National Basic Research 973 Program of China [2013CB036003]
  3. Program for New Century Excellent Talents in University [NCET-12-0961]
  4. China University of Mining and Technology [2014QN002]
  5. Fundamental Research Funds for the Central Universities [2014YC10, 2014XT03]

向作者/读者索取更多资源

Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from to . In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress-time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures. In the present study, two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding of the model specimens, which were fabricated by cement, sand, and water. All specimens were tested under uniaxial compression. Photographic monitoring was adopted to capture images during the entire deformation to investigate the crack initiation, propagation, and coalescence process. Moreover, the acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristics. Finally, the mechanism of crack propagation under microscopic observation was discussed. Fig: AE counts and crack evolution process of rock-like material specimen containing two unparallel fissures for.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据