4.1 Article

Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model

期刊

SPANISH JOURNAL OF AGRICULTURAL RESEARCH
卷 9, 期 4, 页码 1319-1330

出版社

CONSEJO SUPERIOR INVESTIGACIONES CIENTIFICAS-CSIC
DOI: 10.5424/sjar/20110904-358-10

关键词

canopy cover; crop yield modeling; water productivity; water stress

向作者/读者索取更多资源

The Food and Agriculture Organization has reflected the importance of predicting yield response to water by developing the AquaCrop model. During three growing seasons (2007-2009), a field experiment was conducted in the South-East of Damascus (Syria) to assess the response of drip irrigated cotton grown under full (FI) and deficit irrigation (80, 65, 50% of FI). Input data and comparisons between simulated and observed canopy cover (CC), biomass production at harvesting, final seed cotton yield, and soil water content using data sets of the 2007 season, were used for model calibration. The calibrated model was validated using data sets of the 2008 and 2009 seasons, getting accurate simulation results for CC [root mean square error (RMSE) = 6.5%] and actual evapotranspiration-ETa (RMSE = 25 mm, index of agreement = 0.99). The predicted seed cotton yields were within 6% of measurements. The model predictions of soil water content in the 0.60 m profile were close in the general trend to the measurements. In spite of the good prediction of ETa and seed cotton yield for each treatment, there is an apparent tendency for AquaCrop to over-estimate water use efficiency (WUE) under water-deficit conditions. Therefore, in cases of limited input data, the AquaCrop could be a promising model for estimating crop productivity under deficit irrigation conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据