4.5 Review

Emerging Parameter Space Map of Magnetic Reconnection in Collisional and Kinetic Regimes

期刊

SPACE SCIENCE REVIEWS
卷 172, 期 1-4, 页码 271-282

出版社

SPRINGER
DOI: 10.1007/s11214-011-9766-z

关键词

Magnetic; Reconnection; Plasmoids

资金

  1. U.S. Department of Energy through the LANL/LDRD Program
  2. Institutional Computing Program at Los Alamos

向作者/读者索取更多资源

In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of similar to 10x slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据