4.7 Article

Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 128, 期 -, 页码 427-434

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2014.06.018

关键词

Crystalline silicon solar cell; Dopant compensation; Irradiance intensity; Temperature; Cell efficiency; Performance ratio

资金

  1. National Natural Science Foundation of China [61274057]
  2. National Key Technology RD Program [2011BAE03B13]
  3. Innovation Team Project of Zhejiang Province [2009R50005]

向作者/读者索取更多资源

Low-cost upgraded metallurgical grade silicon (UMG-Si) with inherent boron (B) and phosphorus (P) compensation is a novel material for photovoltaic application. This paper presents the impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. For the same rated output power, compensated crystalline silicon solar cells generate less electricity than the reference silicon solar cells at low irradiance intensity, owing to the strong injection dependence of the carrier lifetime due to high concentration of B-O complexes in compensated silicon. However, at high temperature, compensated crystalline silicon solar cells generate more electricity than the reference silicon solar cells, which mainly originates from the lower temperature-variation of the minority electron mobility in compensated silicon. It suggests that compensated silicon solar cells will be more appropriate for high irradiation application, which often contains high irradiance intensity and high temperature. These results are of great significance for understanding the actual outdoor performance of the solar cells based on the UMG-Si and their application in the photovoltaic (PV) industry. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Physics, Applied

Deformation of 4H-SiC: The role of dopants

Xiaoshuang Liu, Junran Zhang, Binjie Xu, Yunhao Lu, Yiqiang Zhang, Rong Wang, Deren Yang, Xiaodong Pi

Summary: The role of dopants on deformation and mechanical properties of 4H silicon carbide (4H-SiC) was investigated using nanoindentation. It was found that different dopants can significantly affect the hardness, elastic modulus, and fracture toughness of 4H-SiC, as well as the formation of dislocations and cracks during nanoindentation. Moreover, polymorph transitions from 4H-SiC to amorphous SiC and 3C-SiC were observed. These findings provide valuable insights for the design of processing methods for differently doped 4H-SiC substrate wafers.

APPLIED PHYSICS LETTERS (2022)

Article Physics, Applied

Effect of hydrogen on the unintentional doping of 4H silicon carbide

Yuanchao Huang, Rong Wang, Naifu Zhang, Yiqiang Zhang, Deren Yang, Xiaodong Pi

Summary: This study investigates the role of hydrogen in the growth of HPSI 4H-SiC single crystals, revealing that it significantly mitigates N doping while hardly affecting B doping. The study also reveals that adjusting the relative B and N doping concentrations has a substantial impact on the Fermi energy of HPSI 4H-SiC.

JOURNAL OF APPLIED PHYSICS (2022)

Article Engineering, Electrical & Electronic

Current Driving Er-Doped Electroluminescence Devices With Long-Term Reliability

Jie Hu, Houwei Pang, Yuan Wang, Deren Yang, Dongsheng Li

Summary: A long-term reliable Erbium doped light emitting device based on npn heterojunction structure has been developed. The device demonstrates a linear relation between the electroluminescence intensity of Er3+ ions and the operating currents. The device with a 3V onset voltage can operate for over 1200 hours due to the separation and acceleration of electrons that excite Er3+ ions. This npn heterojunction device structure can also be applied to other rare earths like Tm, Eu, etc., which opens up possibilities for electroluminescence of rare earths and integrated silicon photonics.

IEEE ELECTRON DEVICE LETTERS (2023)

Article Chemistry, Multidisciplinary

Facile synthesis of defect-rich RuCu nanoflowers for efficient hydrogen evolution reaction in alkaline media

Liang Ji, Sai Luo, Lei Li, Ningkang Qian, Xiao Li, Junjie Li, Jingbo Huang, Xingqiao Wu, Hui Zhang, Deren Yang

Summary: Developing high-performance electrocatalysts for hydrogen evolution reaction in alkaline media is challenging but desirable for water splitting. A wet chemistry method was used to synthesize RuCu nanoflowers with tunable atomic ratios. The Ru3Cu NFs exhibited excellent catalytic properties, requiring only 55 mV for a current density of 10 mA cm(-2) and showing minimal decay after 2000 cycles. The flower-like structure and introduction of Cu improved the HER performance by providing more active sites and modulating the electronic structure of Ru.

NANOSCALE ADVANCES (2023)

Article Physics, Applied

Impurities and defects in 4H silicon carbide

Rong Wang, Yuanchao Huang, Deren Yang, Xiaodong Pi

Summary: The widespread application of 4H silicon carbide (4H-SiC) is imminent due to the increasing fabrication of high-power electronics based on 4H-SiC, promoting low-carbon development worldwide. Additionally, researchers are intensively exploring 4H-SiC as a platform for wafer-scale integration of semiconductor and quantum technologies in the field of quantum technologies. Given the significance of impurities and defects in semiconductors, a comprehensive understanding of impurities and defects in 4H-SiC is crucial. This Perspective summarizes recent experimental and theoretical advancements in impurity and defect research in 4H-SiC, along with a brief historical overview. Furthermore, the discussion covers impurity engineering and defect engineering to fully realize the potential of 4H-SiC, followed by an outline of the challenges in studying impurities and defects in 4H-SiC.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

Crack healing behavior of 4H-SiC: Effect of dopants

Xiaoshuang Liu, Yazhe Wang, Xi Zhang, Yunhao Lu, Rong Wang, Deren Yang, Xiaodong Pi

Summary: We investigated the crack-healing mechanism of 4H silicon carbide (4H-SiC) and found that high-temperature thermal annealing in the air atmosphere effectively heals indentation-induced cracks in undoped 4H-SiC by the formation and viscous flow of SiO2. Nitrogen doping assists the atomic diffusion and crack healing of 4H-SiC, while vanadium doping hinders the healing process. The padding of glassy SiO2 is found to effectively recover the bending strength of indented 4H-SiC samples.

JOURNAL OF APPLIED PHYSICS (2023)

Article Engineering, Electrical & Electronic

Effect of Erbium Incorporation on SiNxOy/c-Si Interface in Silicon-Based Optoelectronic Devices

Lei Yang, Yuxuan Fan, Xiang Lv, Houwei Pang, Shuai Yuan, Xuegong Yu, Dongsheng Li, Deren Yang

Summary: This work investigates the influence of erbium (Er) doping on the SiNxOy/c-Si interface, and found that activated Er3+ ions can result in a higher positive charge density, leading to band bending and deeper depletion regions. Through deep-level transient spectroscopy (DLTS), a higher density of interface states and wider energy distribution were observed in the Er-doped samples. Energy dispersive X-ray spectroscopy (EDX) analysis further supports the interaction between Er impurities and intrinsic defects at the interface.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Multidisciplinary Sciences

Anti-reflection effect of high refractive index polyurethane with different light trapping structures on solar cells

Shengxuan Wang, Hao Cui, Sijia Jin, Xiaodong Pi, Haiyan He, Chunhui Shou, Deren Yang, Lei Wang

Summary: A new anti-reflection strategy is proposed in this study, using soft nanoimprint lithography to prepare textured structures on the outside of SiNx films. Experimental results show that these textured structures have wide spectrum anti-reflection performance.

HELIYON (2023)

Article Chemistry, Multidisciplinary

Numerical analysis of the dislocation density in n-type 4H-SiC

Sheng'ou Lu, Hongyu Chen, Wei Hang, Rong Wang, Julong Yuan, Xiaodong Pi, Deren Yang, Xuefeng Han

Summary: The effect of nitrogen doping on dislocation proliferation in SiC crystals was investigated. The thermal field and thermal stress during PVT growth were calculated, and the dislocation density was calculated based on the Alexander-Haasen model. By comparing the calculation and experimental results, a possible value of effective stress was proposed to evaluate the effect of nitrogen doping on dislocation density in n-type SiC.

CRYSTENGCOMM (2023)

Article Chemistry, Multidisciplinary

Lattice engineering of AuPd@Pt core-shell icosahedra for highly efficient electrocatalytic ethanol oxidation

Ningkang Qian, Degong Ding, Liang Ji, Junjie Li, Hui Zhang, Deren Yang

Summary: In this study, three types of core-shell nanocrystals, Au73Pd27@Pt, Au66Pd34@Pt, and Pd@Pt, were successfully constructed using lattice engineering. The strain effect and ligand effect caused by Au were found to enhance the activity of Pt in the electrocatalytic CO2 reduction reaction (EOR). In situ FTIR studies confirmed that the EOR processes on these nanocrystals were dominated by the C2 pathway, which explained the enhancement of EOR activity by the faster kinetics of the C2 pathway producing acetate or acetaldehyde.

CRYSTENGCOMM (2023)

Article Materials Science, Multidisciplinary

Aligned chromophores in a host-guest MOF crystal for switchable polarized nonlinear optical response

Lin Zhang, Hongjun Li, Yu Yang, Deren Yang, Yuanjing Cui, Guodong Qian

Summary: In this study, a host-guest metal-organic framework (MOF) material was prepared to switch between second-harmonic generation (SHG) and two-photon-pumped (TPP) lasing in a single crystal. The use of specific alignment of nonlinear optical (NLO) building units allowed for the observation of polarized SHG and TPP lasing in a single crystal. These findings contribute to a better understanding of polarized NLO responses in MOFs and provide a new perspective for the development of versatile switching NLO materials.

JOURNAL OF MATERIALS CHEMISTRY C (2022)

Article Chemistry, Multidisciplinary

Enhanced luminescence of erbium silicate: interstitial lithium directly regulates the lattice structure of erbium compound crystals

Huabao Shang, Deren Yang, Dongsheng Li

Summary: We prepared high-intensity luminescent films by doping lithium, which enhances the near-infrared and up-conversion luminescence of erbium silicate by regulating the lattice structure. This method could be universally applicable to enhance luminescence in erbium compounds.

NANOSCALE (2022)

Article Chemistry, Multidisciplinary

Enhanced electrocatalytic reduction of CO2 to formate via doping Ce in Bi2O3 nanosheets

Xiao Li, Ningkang Qian, Liang Ji, Xingqiao Wu, Junjie Li, Jingbo Huang, Yucong Yan, Deren Yang, Hui Zhang

Summary: In this study, a novel Ce-doped Bi2O3 nanosheet electrocatalyst was prepared by a facile solvothermal method for efficient electrochemical CO2 reduction to formate. The Ce-doped Bi2O3 nanosheets exhibited high current density and formate faradaic efficiency. Density functional theory calculations revealed that Ce doping promoted the formation and adsorption of the OCHO* intermediate and inhibited the hydrogen evolution reaction, resulting in high current density and efficiency.

NANOSCALE ADVANCES (2022)

Article Chemistry, Multidisciplinary

Facile synthesis of PdSn alloy octopods through the Stranski-Krastanov growth mechanism as electrocatalysts towards the ethanol oxidation reaction

Jingbo Huang, Liang Ji, Xiao Li, Xingqiao Wu, Ningkang Qian, Junjie Li, Yucong Yan, Deren Yang, Hui Zhang

Summary: A seed-mediated approach was developed for the synthesis of PdSn alloy octopods with precisely controlled branches and tunable compositions. These octopod catalysts demonstrated significantly enhanced catalytic activity and stability for ethanol oxidation reaction, providing a promising avenue for the commercialization of direct ethanol fuel cells.

CRYSTENGCOMM (2022)

Article Materials Science, Multidisciplinary

Stable and wide-wavelength tunable luminescence of CsPbX3 nanocrystals encapsulated in metal-organic frameworks

Hailong Wu, Lijia Yao, Wenqian Cao, Yu Yang, Yuanjing Cui, Deren Yang, Guodong Qian

Summary: Lead-halide perovskite nanocrystals (PeNCs) have attractive optical properties, and a host-guest system was constructed by encapsulating PeNCs in a metal-organic framework (MOF) to adjust their properties and enhance their stability and tunability.

JOURNAL OF MATERIALS CHEMISTRY C (2022)

Article Energy & Fuels

Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss

Shahriyar Safat Dipta, Md Habibur Rahaman, Walia Binte Tarique, Ashraful Hossain Howlader, Ayush Pratik, John A. Stride, Ashraf Uddin

Summary: Implementing a double-sided passivation approach can enhance the performance of n-i-p structured PSCs and improve the stability and photovoltaic properties of the cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Paste-based silver reduction for iTOPCon rear side metallization

Daniel Ourinson, Andreas Brand, Andreas Lorenz, Marwan Dhamrin, Sebastian Tepner, Michael Linse, Nathalie Goettlicher, Kosuke Tsuji, Jonas D. Huyeng, Florian Clement

Summary: This work presents two approaches to reduce the amount of silver on the rear side of M2-sized industrial iTOPCon solar cells. The Cu-based approach shows promise with similar power conversion efficiency compared to the conventional approach, while the Al-based approach exhibits some limitations but demonstrates the potential of such type of contact for iTOPCon solar cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Screen printable copper pastes for silicon solar cells

Abasifreke Ebong, Donald Intal, Sandra Huneycutt, Thad Druffel, Ruvini Dharmadasa, Kevin Elmer, Apolo Nambo

Summary: This study demonstrates the successful metallization of a PERC silicon solar cell using screen-printable copper (Cu) paste. The Cu paste contains antioxidant additives and diffusion inhibitors to prevent oxidation and diffusion of Cu. The Cu-printed cells achieved an efficiency of 19% and showed no Cu diffusion after characterization tests. The long-term stability and effectiveness of the Cu diffusion barrier were also confirmed.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Defining specifications for accurate Metal/TCO specific contact resistivity measurements by TLM in silicon heterojunction devices

Senami Zogbo, Wilfried Favre, Olivier Bonino, Marie-Estelle Gueunier-Farret

Summary: Measuring specific contact resistivity (pc) is crucial for interface engineering in high efficiency solar cells. The Transfer Length Method (TLM) is commonly used for evaluating layer sheet resistance (Rsheet) and pc, but it is not suitable for metal/Transparent Conductive Oxide (TCO) interface evaluation in silicon heterojunction (SHJ) cells. This study investigates the parameters that restrict current confinement within the TCO, including mid-gap trap density (Dit) at the a-Si:H/c-Si interface and the activation energy (Ea = Ec - EF) variation of a-Si:H contact layers.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules part I: Cell-ribbon mechanical interaction through the solder

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: The phenomenon of ribbon lengthening in PV modules exposed to thermal cycling is not well explained in the literature. In this study, a three layers model is proposed to explain this effect, and the predictions of the model are validated through finite element method simulations and experiments. The results show that the model predictions are consistent with the indirect measurements, but not with the direct measurements. Additionally, it is inferred that the encapsulant plays a role after the solder failure.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules, Part II: Glass-ribbon mechanical interaction through the encapsulant

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: This study investigates the problematic ribbon lengthening observed in PV modules exposed to high amplitude thermal cycling. A simplified system model is proposed and accurate predictions are obtained using the Finite Element Method. The results show that the thickness of the encapsulant has a substantial impact on the lengthening of the ribbons.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Gallium nanoparticles as antireflection structures on III-V solar cells

S. Catalan-Gomez, E. Martinez Castellano, M. Schwarz, M. Montes Bajo, L. Dorado Vargas, A. Gonzalo, A. Redondo-Cubero, A. Gallego Carro, A. Hierro, J. M. Ulloa

Summary: This study investigates the use of core-shell gallium nanoparticles as functional light scatterers on solar cells. By optimizing the nanoparticle size, the short-circuit current of the solar cells is significantly improved. The underlying physical mechanism is studied through optical measurements and simulations, and a method to reduce the plasmonic effect of the nanoparticles is demonstrated.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Highly reflective and passivated ohmic contacts in p-Ge by laser processing of aSiCx:H(i)/Al2O3/aSiC films for thermophotovoltaic applications

M. Gamel, G. Lopez, A. M. Medrano, A. Jimenez, A. Datas, M. Garin, I. Martin

Summary: In this study, a highly reflective ohmic contact to p-type c-Ge material is demonstrated, which can improve the efficiency of thermophotovoltaic devices. The experimental results show that this contact can simultaneously meet the requirements of good back surface passivation, low electrical resistivity, and high reflectivity. Moreover, simulations suggest that implementing these back contacts has the potential to achieve conversion efficiencies comparable to high-efficiency c-Ge TPV cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Improvement on solar selective absorption properties of anodic aluminum oxide photonic crystal films by electrodeposition of silver

Hongyang Wei, Qing Xu, Dongchu Chen, Min Chen, Menglei Chang, Xiufang Ye

Summary: This study prepared solar selective absorption films based on anodic aluminum oxide (AAO) photonic crystals using a unique electrodeposition method. The Co-Ag electrodeposited film exhibited superior solar selective absorption properties and thermal stability.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Optical absorption driven by efficient refraction and light concentration for photovoltaic applications

Ankit Kumar, Ankit Chauhan, Jordi Llobet, Helder Fonseca, Patricia C. Sousa, Carlos Calaza, Gil Shalev

Summary: This study found that decorating subwavelength arrays with SiO2 quasi-nanolenses (qNL arrays) can enhance the absorption of the solar spectrum. Optical absorption mechanisms in qNL arrays were investigated using near-field scanning optical microscopy (NSOM), revealing that the enhancement is a result of the combination of effective antireflection coating, increased optical interactions between adjacent dielectrics for elevated light trapping, and strong light concentration due to the presence of qNLs.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Progress on the reduction of silver consumption in metallization of silicon heterojunction solar cells

S. Pingel, T. Wenzel, N. Goettlicher, M. Linse, L. Folcarelli, J. Schube, S. Hoffmann, S. Tepner, Y. C. Lau, J. Huyeng, A. Lorenz, F. Clement

Summary: This study demonstrates the potential to reduce silver consumption in highly efficient SHJ cells through fine-line screen printing using low temperature paste with various screens. The results show that using finer mesh allows for narrower grid fingers and lower resistance, leading to improved cell efficiency. Simulation results indicate that module wire configuration is crucial for reducing silver consumption.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Efficient-thermal conductivity, storage and application of bionic tree-ring composite phase change materials based on freeze casting

Xibo He, Jun Qiu, Wei Wang, Yicheng Hou, Yong Shuai

Summary: This paper proposes a novel phase change material with high thermal conductivity and stability for fast photo-thermal conversion and storage. The experimental results demonstrate excellent durability and stability of the phase change material, with good performance in thermal conductivity and thermal storage efficiency.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Solar evaporation of liquid marbles with tunable nanowire array

Qingyuan Liu, Lin Wang, Zheng Liu, Guohua Liu

Summary: A new evaporating structure consisting of liquid marble with tunable nanowire array is proposed to enhance solar evaporation. The experiments show that the liquid marble with nanowire array exhibits outstanding evaporation performance, which has significant implications for seawater desalination or wastewater treatment.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Effects of different interface on the stability of hybrid heterojunction solar cells

Hao Liu, Qiming Liu, Jinpei Liu, Yonggang Zhao, Yingjie Yu, Yue An, Ganghui Wei, Yanzheng Li, Yujun Fu, Junshuai Li, Deyan He

Summary: Moisture in the air is identified as the main cause of performance degradation in organic-inorganic hybrid solar cells. Exposure to air leads to the growth of thin oxide layer on the interface and the formation of silver sulfide, increasing the series resistance and decreasing the fill factor, thus degrading the cell performance.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Refractive indices and extinction coefficients of p-type doped Germanium wafers for photovoltaic and thermophotovoltaic devices

E. Blanco, P. Martin, M. Dominguez, P. Fernandez-Palacios, I. Lombardero, C. Sanchez-Perez, I. Garcia, C. Algora, M. Gabas

Summary: This study addresses the lack of optical parameters for p-type Ge wafers by determining the complex refractive indices of commercial Ge wafers with varying doping levels. The obtained data successfully reproduces the critical points associated with interband transitions and absorption features below the bandgap. The refractive indices were validated through experimental measurements and solar cell simulations.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)