4.7 Article

Properties of n-type polycrystalline silicon solar cells formed by aluminium induced crystallization and CVD thickening

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 94, 期 11, 页码 1869-1874

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2010.06.031

关键词

Polycrystalline silicon; Aluminium induced crystallization; n-Type; Solar cells

资金

  1. ANR

向作者/读者索取更多资源

Large-grained, n(+)n-type polycrystalline silicon (poly-Si) films were obtained on alumina substrates by combining the aluminium induced crystallization (AlC) process of amorphous silicon and chemical vapour deposition (LPCVD) at high temperature (1000 degrees C) for the epitaxial thickening. The n(+) seed layer was obtained by phosphorus doping of the AlC layer. The electron backscattering diffraction (EBSD) technique was used for the crystallographic analysis of the poly-Si thin films. Seed layers with an average grain size of 7.6 mu m were obtained on alumina substrates by exchange annealing at 475 degrees C for 6 h. Heterojunction emitter (HJE) solar cells were fabricated on such layers and their characteristics were monitored. IQE measurements show that n-type material based solar cells led to a much higher current collection over a large part of the spectrum compared to p-type cells. Accordingly a high effective diffusion length of about 2 mu m for n-type heterojunction solar cells was obtained while it is about 0.9 mu m for the p-type cell. As a result, the first n-type solar cells showed efficiencies above 5%, which is a very promising result considering that no optimization nor texturing have been applied so far. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据