4.4 Article

Nitrous Oxide Dynamics in a Deep Soil-Alluvial Gravel Vadose Zone Following Nitrate Leaching

期刊

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
卷 76, 期 4, 页码 1333-1346

出版社

SOIL SCI SOC AMER
DOI: 10.2136/sssaj2011.0349

关键词

-

资金

  1. New Zealand Foundation for Research Science and Technology [CO3X0303, CO2X0304, C02X0809]
  2. New Zealand Ministry of Business, Innovation & Employment (MBIE) [C02X0809] Funding Source: New Zealand Ministry of Business, Innovation & Employment (MBIE)

向作者/读者索取更多资源

Subsoil denitrification is a potential sink for leached nitrate (NO3-) that may otherwise contaminate ground water. A field trial was undertaken to assess the importance of subsoil denitrification and to examine the role of leached NO3- on subsurface nitrous oxide (N2O) (a potent greenhouse gas) dynamics. We monitored NO3-, Br-, N2O, CO2, and O-2 concentrations in alluvial vadose materials to a depth of 7 m over a 32-mo period following the application of N (400 kg ha(-1) as NH4NO3) and Br- to potatoes (Solanum tuberosum L.) followed by a second application (400 kg ha(-1) as NH4NO3) to ryegrass (Lolium multiflorum Lam.) 24 mo later. Our sampling system consisted of an array of ceramic cups and permeable silicone tubing chambers to sample soil solution and gases. Following rainfall and irrigation, subsoil N2O concentrations increased rapidly. Within days of NO3- leaching below 1 m, high concentrations of NO3-, Br-, and N2O were observed at 7-m depth. Based on N to Br- ratios, and NO3- leaching estimates from drainage amounts and leachate NO3- concentrations, 5 to 10% of the fertilizer and soil N was denitrified. Based on N2O flux estimates and NO3--N/Br- ratios, almost all of the net N2O production occurred in the subsoil above the gravel material (1-m depth). In the gravel matrix the NO3--N/Br- ratio did not change indicating a low capacity to attenuate NO3-.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据