4.7 Article

Decomposition of black locust and black pine leaf litter in two coeval forest stands on Mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 51, 期 -, 页码 1-15

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2012.03.025

关键词

Decomposition rates; AUR-Lignin; AUR-to-Cellulose ratio; Methoxyl-C-to-Phenol-C ratio; Limit value; Three-stage model

资金

  1. program MIUR Incentivazione alla mobilita di studiosi stranieri e italiani residenti all'estero

向作者/读者索取更多资源

Litter quality is an important determinant of soil organic matter formation. Changes of organic components were investigated along decomposition of black locust (Robinia pseudoacacia L) leaf litter and black pine (Pinus nigra Am.) needle litter in the native adjacent coeval forest stands. To this purpose, data from proximate analyses were compared with those from CPMAS C-13 NMR. Newly shed leaf litter of black locust had significantly higher concentrations of ADSS (acid detergent soluble substances) as well as lower concentrations of cellulose and AUR (acid unhydrolyzable residues that include lignin) and higher AUR-to-Cellulose ratio than that of black pine. The C-13 CPMAS NMR spectra of newly shed leaf litter of black locust and black pine revealed that O-Alkyl-C components (including cellulose and hemicelluloses) accounted, respectively, for 53.8% and 61.4% of the total area of the spectra. All other C fractions were relatively more abundant in black locust than in black pine. Within individual sampling periods, relationships between residual litter mass and concentrations of ADSS, cellulose and AUR were examined, as were relationships between residual litter C and NMR fractions. Four periods were defined based on the slopes of the decomposition curve, with the length of period I defined by the start of a net decrease of AUR. Proximate analyses and NMR data showed changes in chemical composition over the decomposition process, as well as changes in decay rates of the residues, following different paths in the two litters. ADSS decayed faster in black locust litter; in contrast cellulose and AUR decayed faster in that of black pine. AUR concentration increased in both litters during decomposition; however, compared to black pine, the remaining litter of black locust was richer in AUR, despite the lower initial concentration, and had a higher AUR-to-Cellulose ratio. Phenol-C and Aryl-C decayed faster in black locust litter, while Alkyl-C decayed faster in that of black pine. In both litters, mass loss in periods was negatively correlated to concentration of AUR at the start of the periods. C loss in periods was negatively correlated to the concentration at the start of the periods of MC-to-PC (an index of lignin content) in black locust litter and positively correlated to Alkyl-C and O-Alkyl-C in that of black pine. Phenol-C, O-Alkyl-C and Aryl-C were the most decomposable C fractions in black locust. O-Alkyl-C and Alkyl-C were the most decomposable C fractions in black pine. Limit value was lower in black pine than in black locust. Consequently the different pattern of litter decomposition can affect the size of C sequestration in the forest floor and the quality of accumulated organic carbon. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据