4.6 Article

Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism

期刊

SOFT MATTER
卷 10, 期 27, 页码 4990-5002

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4sm00411f

关键词

-

向作者/读者索取更多资源

We examine the gelation of alginate undergoing ionic crosslinking upon ultraviolet (UV) irradiation using in situ dynamic rheology. Hydrogels are formed by combining alginate with calcium carbonate (CaCO3) particles and a photoacid generator (PAG). The PAG is photolyzed upon UV irradiation, resulting in the release of free calcium ions for ionic crosslinking. The viscous and elastic moduli during gelation are monitored as a function of the UV irradiation intensity, exposure time, alginate concentration, and the ratio between alginate and calcium carbonate. Gel time decreases as irradiation intensity increases because a larger concentration of PAG is photolyzed. Interestingly, dark curing, the continuing growth of microstructure in the absence of UV light, is observed. In some instances, the sample transitions from a solution to a gel during the dark curing phase. Additionally, when exposed to constant UV irradiation after the dark curing phase, samples reach the same plateau modulus as samples exposed to constant UV without dark curing, implying that dark curing does not affect the gelation mechanism. We believe the presence of dark curing is the result of the acidic environment persisting within the sample, allowing CaCO3 to dissociate, thereby releasing free Ca2+ ions capable of binding with the available appropriate ionic blocks of the polymer chains. The growth of microstructure is then detected if the activation barrier has been crossed to release sufficient calcium ions. In this regard, we calculate a value of 30 J that represents the activation energy required to initiate gelation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据