4.6 Article

A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control

期刊

SMART MATERIALS AND STRUCTURES
卷 22, 期 9, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/22/9/095020

关键词

-

向作者/读者索取更多资源

Inspired by its controllable and field-dependent stiffness/damping properties, there has been increasing research and development of magnetorheological elastomer (MRE) for mitigation of unwanted structural or machinery vibrations using MRE isolators or absorbers. Recently, a breakthrough pilot research on the development of a highly innovative prototype adaptive MRE base isolator, with the ability for real-time adaptive control of base isolated structures against various types of earthquakes including near-or far-fault earthquakes, has been reported by the authors. As a further effort to improve the proposed MRE adaptive base isolator and to address some of the shortcomings and challenges, this paper presents systematic investigations on the development of a new highly adjustable MRE base isolator, including experimental testing and characterization of the new isolator. A soft MR elastomer has been designed, fabricated and incorporated in the laminated structure of the new MRE base isolator, which aims to obtain a highly adjustable shear modulus under a medium level of magnetic field. Comprehensive static and dynamic testing was conducted on this new adaptive MRE base isolator to examine its characteristics and evaluate its performance. The experimental results show that this new MRE base isolator can remarkably change the lateral stiffness of the isolator up to 1630% under a medium level of magnetic field. Such highly adjustable MRE base isolator makes the design and implementation of truly real-time adaptive (e. g. semi-active or smart passive) seismic isolation systems become feasible.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据