4.6 Article

Design and testing of a MRF rotational damper for vehicle applications

期刊

SMART MATERIALS AND STRUCTURES
卷 19, 期 6, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/19/6/065006

关键词

-

向作者/读者索取更多资源

Adaptive dampers are an interesting solution for conjugating the necessity of controllable devices and low power consumption. Magneto-rheological fluids (MRF) can be profitably employed in adaptive dampers because of the significant variation of fluid parameters with magnetic field properties. This paper focuses on the design process of an innovative rotational MR damper specifically created to be placed in the front-wheel suspension of a compact car. The advantages of the rotational damper and the definition of the optimal design are described. The proposed damper significantly reduces several key problems associated with MR devices: the quantity of fluid required, the sedimentation of ferromagnetic particles in the suspension and the abrasion of the seals. In fact, with this solution, low average working pressure, low flow velocity through valves, a wide range of variable damping characteristics, and high durability of the damper can be achieved. Thanks to this innovative component, different new architectures for adaptive suspension systems can be developed to have a planar distribution of the suspension components with a consequent space optimization and size reduction in the vertical direction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据