4.6 Article

Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis

期刊

SMART MATERIALS AND STRUCTURES
卷 19, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/19/1/015021

关键词

-

资金

  1. National Defense Science and Engineering Grant (NDSEG)
  2. NSF Integrative Graduate Education and Research Traineeship (NSF-IGERT)
  3. NASA [NCC-1-02038]
  4. NASA-Glenn
  5. Boeing Company

向作者/读者索取更多资源

A shape memory alloy (SMA) composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam components used as cyclic actuators and incorporated into morphing aerospace structures. The active structure is a variable-geometry chevron (VGC) designed to reduce jet engine noise in the take-off flight regime while maintaining efficiency in the cruise regime. This two-part work addresses the training, characterization and derived material properties of the new nickel-rich NiTi composition, the assessment of the actuation properties of the active beam actuator and the accurate analysis of the VGC and its subcomponents using a model calibrated from the material characterization. The second part of this two-part work focuses on the numerical modeling of the jet engine chevron application, where the end goal is the accurate prediction of the VGC actuation response. A three-dimensional (3D) thermomechanical constitutive model is used for the analysis and is calibrated using the axial testing results from part I. To best capture the material response, features of several SMA constitutive models proposed in the literature are combined to form a new model that accounts for two material behaviors not previously addressed simultaneously. These are the variation in the generated maximum actuation strain with applied stress level and a smooth strain-temperature constitutive response at the beginning and end of transformation. The accuracy of the modeling effort is assessed by comparing the analysis deflection predictions for a given loading path imposed on the VGC or its subcomponents to independently obtained experimental results consisting of photogrammetric data. For the case of full actuation of the assembled VGC, the average error in predicted centerline deflection is less than 6%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据