4.6 Article

A real-time multigrid finite hexahedra method for elasticity simulation using CUDA

期刊

SIMULATION MODELLING PRACTICE AND THEORY
卷 19, 期 2, 页码 801-816

出版社

ELSEVIER
DOI: 10.1016/j.simpat.2010.11.005

关键词

Elasticity simulation; Deformable objects; Finite element methods; Multigrid; GPU; CUDA

资金

  1. International Graduate School of Science and Engineering (IGSSE) of the Technische Universitat Munchen

向作者/读者索取更多资源

We present a multigrid approach for simulating elastic deformable objects in real time on recent NVIDIA GPU architectures. To accurately simulate large deformations we consider the co-rotated strain formulation. Our method is based on a finite element discretization of the deformable object using hexahedra. It draws upon recent work on multigrid schemes for the efficient numerical solution of partial differential equations on such discretizations. Due to the regular shape of the numerical stencil induced by the hexahedral regime, and since we use matrix-free formulations of all multigrid steps, computations and data layout can be restructured to avoid execution divergence of parallel running threads and to enable coalescing of memory accesses into single memory transactions. This enables to effectively exploit the GPU's parallel processing units and high memory bandwidth via the CUDA parallel programming API. We demonstrate performance gains of up to a factor of 27 and 4 compared to a highly optimized CPU implementation on a single CPU core and 8 CPU cores, respectively. For hexahedral models consisting of as many as 269,000 elements our approach achieves physics-based simulation at 11 time steps per second. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据