4.6 Article

A PRIMAL-DUAL FINITE ELEMENT APPROXIMATION FOR A NONLOCAL MODEL IN PLASTICITY

期刊

SIAM JOURNAL ON NUMERICAL ANALYSIS
卷 49, 期 2, 页码 692-710

出版社

SIAM PUBLICATIONS
DOI: 10.1137/100789397

关键词

strain gradient plasticity; a priori finite element estimates; variational inequalities; semismooth Newton; radial return

向作者/读者索取更多资源

We study the numerical approximation of a static infinitesimal plasticity model of kinematic hardening with a nonlocal extension. Here, the free energy to be minimized is a combination of the elastic energy and an additional term depending on the curl of the plastic variable. First, we introduce the stress as dual variable and provide an equivalent primal-dual formulation resulting in a local flow rule. The discretization is based on curl-conforming Nedelec elements. To obtain optimal a priori estimates, the finite element spaces have to satisfy a uniform inf-sup condition. This can be guaranteed by adding locally defined face and element bubbles. Second, the discrete variational inequality system is reformulated as a nonlinear equality. We show that the classical radial return algorithm applied to the mixed inequality formulation is equivalent to a semismooth Newton method for the nonlinear system of equations. Numerical results illustrate the convergence of the applied discretization and the solver.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据