4.6 Article

WAVENUMBER EXPLICIT CONVERGENCE ANALYSIS FOR GALERKIN DISCRETIZATIONS OF THE HELMHOLTZ EQUATION

期刊

SIAM JOURNAL ON NUMERICAL ANALYSIS
卷 49, 期 3, 页码 1210-1243

出版社

SIAM PUBLICATIONS
DOI: 10.1137/090776202

关键词

Helmholtz equation at high wavenumber; stability; convergence; hp-finite elements

向作者/读者索取更多资源

We develop a stability and convergence theory for a class of highly indefinite elliptic boundary value problems (bvps) by considering the Helmholtz equation at high wavenumber k as our model problem. The key element in this theory is a novel k-explicit regularity theory for Helmholtz bvps that is based on decomposing the solution into two parts: the first part has the Sobolev regularity properties expected of second order elliptic PDEs but features k-independent regularity constants; the second part is an analytic function for which k-explicit bounds for all derivatives are given. This decomposition is worked out in detail for several types of bvps, namely, the Helmholtz equation in bounded smooth domains or convex polygonal domains with Robin boundary conditions and in exterior domains with Dirichlet boundary conditions. We present an error analysis for the classical hp-version of the finite element method (hp-FEM) where the dependence on the mesh width h, the approximation order p, and the wavenumber k is given explicitly. In particular, under the assumption that the solution operator for Helmholtz problems is polynomially bounded in k, it is shown that quasi optimality is obtained under the conditions that kh/p is sufficiently small and the polynomial degree p is at least O(log k).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据