4.5 Article

THE DYNAMICS OF WEAKLY REVERSIBLE POPULATION PROCESSES NEAR FACETS

期刊

SIAM JOURNAL ON APPLIED MATHEMATICS
卷 70, 期 6, 页码 1840-1858

出版社

SIAM PUBLICATIONS
DOI: 10.1137/090764098

关键词

persistence; global stability; dynamical systems; population processes; chemical reaction systems; mass action kinetics; deficiency; complex-balancing; detailed-balancing; polyhedron

资金

  1. Lucent Technologies
  2. [NSF-DMS-0553687]

向作者/读者索取更多资源

This paper concerns the dynamical behavior of weakly reversible, deterministically modeled population processes near the facets (codimension-one faces) of their invariant manifolds and proves that the facets of such systems are repelling. It has been conjectured that any population process whose network graph is weakly reversible (has strongly connected components) is persistent. We prove this conjecture to be true for the subclass of weakly reversible systems for which only facets of the invariant manifold are associated with semilocking sets, or siphons. An important application of this work pertains to chemical reaction systems that are complex-balancing. For these systems it is known that within the interior of each invariant manifold there is a unique equilibrium. The global attractor conjecture states that each of these equilibria is globally asymptotically stable relative to the interior of the invariant manifold in which it lies. Our results pertaining to weakly reversible systems imply that this conjecture holds for all complex-balancing systems whose boundary equilibria lie in the relative interior of the boundary facets. As a corollary, we show that the global attractor conjecture holds for those systems for which the associated invariant manifolds are two-dimensional.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据