4.7 Article

Mitochondrial aquaporin-8-mediated hydrogen peroxide transport is essential for teleost spermatozoon motility

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep07789

关键词

-

资金

  1. Spanish Ministry of Science and Innovation (MICINN) [AGL2010-15597]
  2. Research Council of Norway [178837/40, 224816/E40]
  3. Spanish MICINN

向作者/读者索取更多资源

Reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), cause oxidative cell damage and inhibit sperm function. In most oviparous fishes that spawn in seawater (SW), spermatozoa may be exposed to harmful ROS loads associated with the hyperosmotic stress of axonemal activation and ATP synthesis from mitochondrial oxidative phosphorylation. However, it is not known how marine spermatozoa can cope with the increased ROS levels to maintain flagellar motility. Here, we show that a marine teleost orthologue of human aquaporin-8, termed Aqp8b, is rapidly phosphorylated and inserted into the inner mitochondrial membrane of SW-activated spermatozoa, where it facilitates H2O2 efflux from this compartment. When Aqp8b intracellular trafficking and mitochondrial channel activity are immunologically blocked in activated spermatozoa, ROS levels accumulate in the mitochondria leading to mitochondrial membrane depolarisation, the reduction of ATP production, and the progressive arrest of sperm motility. However, the decreased sperm vitality underlying Aqp8b loss of function is fully reversed in the presence of a mitochondria-targeted antioxidant. These findings reveal a previously unknown detoxification mechanism in spermatozoa under hypertonic conditions, whereby mitochondrial Aqp8b-mediated H2O2 efflux permits fuel production and the maintenance of flagellar motility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据