4.7 Article

Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse

期刊

SEPARATION AND PURIFICATION TECHNOLOGY
卷 127, 期 -, 页码 77-83

出版社

ELSEVIER
DOI: 10.1016/j.seppur.2014.02.016

关键词

Advanced oxidation; Wastewater reuse; Micropollutants; Metaldehyde; Operating cost

资金

  1. Thames Water

向作者/读者索取更多资源

The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Initial tests employed low concentrations of a range of key emerging contaminants of concern, subsequently focusing on the highly recalcitrant compound metaldehyde (MA), and the water quality varied by blending MF and RO permeate. Under optimum H2O2 and lamp power conditions, AOP achieved significant removal (>99%) of N-nitrosodimethylamine (NDMA) and endocrine disrupting compounds (EDCs) for all waters. Pesticide removal, in particular metaldehyde, atrazine and 2,4,5-trichlorophenoxyacetic acid, was dependent on water transmittance (UVT), and levels of TOC and other hydroxyl radical (center dot OH) scavengers. Further analysis of MA removal showed UVT, hydraulic retention time and H2O2 dose to be influential parameters in determining degradation as a function of UV dose. A cost assessment revealed energy consumption to account for 65% of operating expenditure with lamp replacement contributing 25%. A comparison of three unit process sequences, based on MF, RO, AOP and activated carbon (AC), revealed MF-RO-AOP to be the most cost effective provided management of the RD concentrate stream incurred no significant cost. Results demonstrated AOPs to satisfactorily reduce levels of the more challenging recalcitrant MPs to meet stringent water quality standards for wastewater reuse, but that practical limitations exist and the cost penalty is significant. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据