4.7 Article

Pore-size-dependent sensing property of hierarchical SnO2 mesoporous microfibers as formaldehyde sensors

期刊

SENSORS AND ACTUATORS B-CHEMICAL
卷 186, 期 -, 页码 640-647

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2013.06.073

关键词

SnO2 fibers; Hierarchical mesoporous structure; Pore size; Formaldehyde sensors

向作者/读者索取更多资源

Distinct from SnO2 nanoparticulates whose gas-sensing properties depend deeply on grain size and specific surface area, hierarchical SnO2 mesoporous structures has been found to possess remarkable gas-sensing performance due to their large accessible surface area. Interestingly, our obtained hierarchical SnO2 mesoporous microfibers shows an increase in the response to formaldehyde (HCHO) gas with decreasing specific surface area and increasing pore size, characterized by TEM, BET and performance analysis. The pore-size-dependent gas-sensing properties are mainly attributed to the transport of detected gases inside SnO2 mesoporous microfibers. Smaller pores can not provide efficient gas transport to more active sites while larger pores can allow most detected gas molecules diffuse easily inside the deeper region of the mesoporous SnO2 microfibers and react with oxygen species adsorbed on the surface (these reactive surface can be called as effective surface), resulting in a large sensor response. Therefore, the pore size and its resultant effective surface area rather than specific surface area play a dominant role in the gas-sensing properties of mesoporous materials, which can provide us with new insight on the design of high-performance gas sensors in the future. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据