4.7 Article

Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

期刊

SCIENTIFIC REPORTS
卷 5, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/srep11425

关键词

-

资金

  1. Singapore - MIT Alliance for Research and Technology (SMART) Centre
  2. BioSystems and Micromechanics (BioSyM) IRG
  3. Infectious Disease (ID) IRG Singapore
  4. SMART graduate fellowship

向作者/读者索取更多资源

Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Biochemical Research Methods

Studying the efficacy of antiplatelet drugs on atherosclerosis by optofluidic imaging on a chip

Yunjie Deng, Hui Min Tay, Yuqi Zhou, Xueer Fei, Xuke Tang, Masako Nishikawa, Yutaka Yatomi, Han Wei Hou, Ting-Hui Xiao, Keisuke Goda

Summary: Vascular stenosis caused by atherosclerosis leads to platelet activation and aggregation, resulting in thrombus formation. Antiplatelet drugs are commonly used but may not prevent recurrent thrombotic events due to limited understanding of their efficacy in the complex hemodynamic environment. We propose and demonstrate a method involving a 3D stenosis microfluidic chip and optical time-stretch quantitative phase imaging system for studying the efficacy of antiplatelet drugs under stenosis. Our method simulates the flow environment of vascular stenosis and enables high-resolution and statistical analysis of platelet aggregates. This method can assist in developing optimal pharmacologic strategies for patients with atherosclerosis.

LAB ON A CHIP (2023)

Article Chemistry, Multidisciplinary

Flexible Nanoarchitectonics for Biosensing and Physiological Monitoring Applications

Aditya Ashok, Tuan-Khoa Nguyen, Matthew Barton, Michael Leitch, Mostafa Kamal Masud, Hyeongyu Park, Thanh-An Truong, Yusuf Valentino Kaneti, Hang Thu Ta, Xiaopeng Li, Kang Liang, Thanh Nho Do, Chun-Hui Wang, Nam-Trung Nguyen, Yusuke Yamauchi, Hoang-Phuong Phan

Summary: Flexible and low-impedance mesoporous gold electrodes were developed through a combination of bottom-up mesoporous formation technique and top-down microlithography process. These electrodes exhibited excellent mechanical flexibility, stable electrical characteristics, and high surface area, making them suitable for high current density transfer and biological sensing. In vivo experiments demonstrated successful peripheral nerve recording functionalities, highlighting the potential of these electrodes for neuronal recording and modulation applications.
Review Chemistry, Multidisciplinary

Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy

Kimberley Clack, Narshone Soda, Surasak Kasetsirikul, Rabbee G. G. Mahmudunnabi, Nam-Trung Nguyen, Muhammad J. A. Shiddiky

Summary: Liquid biopsy is a significant advancement in the early detection of cancer, as it offers painless sampling through easily accessible bodily fluids and eliminates the need for specialized equipment or trained staff. Nanotechnology and microfabrication have enabled the development of highly precise chip-based platforms, which can detect multiple cancer biomarkers simultaneously and overcome detection limitations. This review highlights the major advances in portable and semi-portable micro, nano, and multiplexed platforms for circulating cancer biomarker detection, discusses the merits and drawbacks of these platforms, and addresses the challenges and future directions in terms of device portability.
Review Materials Science, Biomaterials

Polymeric nanomaterial strategies to encapsulate and deliver biological drugs: points to consider between methods

Xiangxun Chen, Yuao Wu, Van Thanh Dau, Nam-Trung Nguyen, Hang Thu Ta

Summary: Biological drugs (BDs) have become increasingly important in treating various diseases, but their effectiveness is limited by challenges in administration, delivery, stability, and degradation. Nanotechnology, specifically polymeric nanomaterials, is being used to overcome these limitations. This review examines recent articles on manufacturing methods for encapsulating BDs in polymeric materials and analyzes the advantages and disadvantages of different strategies, such as emulsification, nanoprecipitation, self-encapsulation, and coaxial electrospraying. The impact of critical synthesis parameters on BD activity, such as sonication, is also explored, along with future challenges and perspectives for scale-up production and clinical translation.

BIOMATERIALS SCIENCE (2023)

Article Nanoscience & Nanotechnology

Experimental Validation and Computational Predictions Join Forces to Map Catalytic C-H Activation in Ferrocene Metalated Porous Organic Polymers

Bishal Boro, Ratul Paul, Hui Ling Tan, Quang Thang Trinh, Jabor Rabeah, Chia-Che Chang, Chih-Wen Pao, Wen Liu, Nam-Trung Nguyen, Binh Khanh Mai, John Mondal

Summary: In this study, a unique metalated porous organic polymer was synthesized using a cost-effective approach, and it exhibited superior catalytic performance for low-temperature reactions in water. The polymer addressed some drawbacks of conventional catalytic systems.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

Vertical Piezo-Optoelectronic Coupling in a 3C-SiC/Si Heterostructure for Self-Powered and Highly Sensitive Mechanical Sensing

Cong Thanh Nguyen, Dinh Gia Ninh, Tuan-Hung Nguyen, Trung-Hieu Vu, Dang D. H. Tran, Braiden Tong, Nam-Trung Nguyen, Van Thanh Dau, Dzung Viet Dao

Summary: This paper presents a new self-powered mechanical sensing technology based on vertical piezo-optoelectronic coupling. By applying mechanical stress or strain to the 3C-SiC/Si heterojunction, the photogenerated voltage can be changed. Experimental results demonstrate a highly linear relationship between strain and vertical photovoltage, increasing under tensile strain and decreasing under compressive strain. The proposed technology exhibits significantly larger strain sensitivities compared to lateral piezo-optoelectronic couplings reported in literature. The enhancement in strain sensitivity opens up possibilities for the development of ultra-sensitive and self-powered mechanical sensors.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Engineering Route for Stretchable, 3D Microarchitectures of Wide Bandgap Semiconductors for Biomedical Applications

Thanh-An Truong, Tuan Khoa Nguyen, Xinghao Huang, Aditya Ashok, Sharda Yadav, Yoonseok Park, Mai Thanh Thai, Nhat-Khuong Nguyen, Hedieh Fallahi, Shuhua Peng, Sima Dimitrijev, Yi-Chin Toh, Yusuke Yamauchi, Chun Hui Wang, Nigel Hamilton Lovell, John Ashley Rogers, Thanh Nho Do, Nam-Trung Nguyen, Hangbo Zhao, Hoang-Phuong Phan

Summary: A stamping-free micromachining process is used to realize 3D flexible and stretchable wide bandgap electronics. Photolithography is applied on both sides of free-standing nanomembranes to create flexible structures directly on standard silicon wafers, allowing control over optical transparency and mechanical properties. The detachment and controlled mechanical buckling of the devices transform 2D wide bandgap semiconductors into complex 3D structures. This advancement in wide bandgap materials with 3D architectures will greatly facilitate the development of advanced 3D bio-electronics interfaces.

ADVANCED FUNCTIONAL MATERIALS (2023)

Review Biotechnology & Applied Microbiology

Nanobubble technologies: Applications in therapy from molecular to cellular level

Helena H. W. B. Hansen, Haotian Cha, Lingxi Ouyang, Jun Zhang, Bo Jin, Helen Stratton, Nam-Trung Nguyen, Hongjie An

Summary: Nanobubbles, suspended gaseous entities in liquids, have versatile biomedical applications such as aiding in drug delivery, serving as imaging agents, and allowing controlled and targeted delivery. This review provides an overview of their preparation, characterization, current research focuses, and their potential impact on the future of biomedicine.

BIOTECHNOLOGY ADVANCES (2023)

Article Acoustics

Parametric analysis of acoustically levitated droplet for potential microgravity application

Aditya Vashi, Ajeet Singh Yadav, Nam-Trung Nguyen, Kamalalayam Rajan Sreejith

Summary: Acoustic levitation is a versatile technique that can handle solid and liquid samples without contact. This study demonstrates the use of acoustically levitated droplets as a means to simulate microgravity on earth, which has potential applications in laboratory experiments.

APPLIED ACOUSTICS (2023)

Article Engineering, Chemical

Effects of obstacles on inertial focusing and separation in sinusoidal channels: An experimental and numerical study

Haotian Cha, Hoseyn A. Amiri, Sima Moshafi, Ali Karimi, Ali Nikkhah, Xiangxun Chen, Hang T. Ta, Nam-Trung Nguyen, Jun Zhang

Summary: Inertial microfluidics is a technique that uses the finite inertia of fluid at high flow speed to manipulate and separate microparticles. Embedding periodic micro-obstacles into curvilinear channels has been found to be an effective strategy to improve inertial focusing and separation. This study systematically investigated the influence of micro-obstacles on inertial focusing and developed a high-resolution microfluidic device for particle and cell separation. The results showed that concave obstacles were more effective in tuning particle inertial focusing and separation compared to convex obstacles, and the square concave obstacle channel offered the highest separation resolution. The developed microfluidic device showed high-efficiency separation of polystyrene beads and U87MG cancer cells from blood.

CHEMICAL ENGINEERING SCIENCE (2023)

Article Chemistry, Analytical

Uniaxial Cyclic Cell Stretching Device for Accelerating Cellular Studies

Sharda Yadav, Pradip Singha, Nhat-Khuong Nguyen, Chin Hong Ooi, Navid Kashaninejad, Nam-Trung Nguyen

Summary: Cellular response to mechanical stimuli is essential for maintaining cell homeostasis, and the interaction between the extracellular matrix and mechanical stress plays a significant role in organizing the cytoskeleton and aligning cells. Tools for applying and measuring mechanical forces on cells have greatly contributed to understanding mechanobiology and its impact on diseases.

MICROMACHINES (2023)

Review Chemistry, Multidisciplinary

Placental Exosomes as Biomarkers for Maternal Diseases: Current Advances in Isolation, Characterization, and Detection

Cong Minh Nguyen, Mohamed Sallam, Md Sajedul Islam, Kimberley Clack, Narshone Soda, Nam-Trung Nguyen, Muhammad J. A. Shiddiky

Summary: Playing a critical role in fetal growth and development, the placenta serves as the interface between fetal and maternal circulation. Placental exosomes, small membrane-bound extracellular vesicles released by the placenta during pregnancy, contain biomolecules that can potentially be biomarkers for maternal diseases. Numerous studies have demonstrated the usefulness of placental exosomes in diagnosing and monitoring conditions such as pre-eclampsia and gestational diabetes, suggesting their potential as new biomarkers in liquid biopsy analysis. This review provides an overview of the biological function of placental exosomes, their potential as biomarkers for maternal diseases, and the current barriers and future directions in exosome isolation, characterization, and detection techniques. Additionally, microfluidic devices for exosome research are discussed.

ACS SENSORS (2023)

Review Engineering, Biomedical

Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis

Akriti Nepal, Huong D. N. Tran, Nam-Trung Nguyen, Hang Thu Ta

Summary: In traumatized patients, uncontrollable continuous bleeding and unexpected intraoperative bleeding are the primary causes of mortality, increasing the risk of complications and surgical failure. Haemostatic sponges, with their high liquid absorption ratio, are an effective clinical practice for treating various types of wound bleeding. When in contact with blood, they can cause platelet adhesion, aggregation, and thrombosis, achieving the goal of wound bleeding control.

BIOACTIVE MATERIALS (2023)

Article Biochemical Research Methods

Label-free virtual staining of neutrophil extracellular traps (NETs) in microfluidics

Chayakorn Petchakup, Siong Onn Wong, Rinkoo Dalan, Han Wei Hou

Summary: Neutrophils, which are the most abundant circulating white blood cells, release DNA to eliminate pathogenic threats. The conventional methods for quantifying neutrophil extracellular traps (NETs) are expensive and time-consuming. In this study, a novel virtual staining method using deep convolutional neural networks was employed to quantify NETs without labeling. The accuracy of the model was optimized and validated using various reconstruction metrics. The model successfully detected different NET profiles for different treatments, demonstrating its potential for clinical research and disease testing.

LAB ON A CHIP (2023)

Article Engineering, Environmental

3D Airway Epithelial-Fibroblast Biomimetic Microfluidic Platform to Unravel Engineered Nanoparticle-Induced Acute Stress Responses as Exposome Determinants

Melissa Kao Hui Lee, Hong Kit Lim, Chengxun Su, Jie Yan Cheryl Koh, Magdiel Inggrid Setyawati, Kee Woei Ng, Han Wei Hou, Chor Yong Tay

Summary: This study used a three-dimensional biomimetic microfluidic lung-on-chip platform and RNA sequencing to investigate the effects of two model nanoparticles on airway epithelium cells. It was found that even low-level exposure to these nanoparticles triggered chemotaxis of lung fibroblasts and induced a transcriptomic response associated with the development of lung fibrosis. These findings provide new insights into the early acute events of respiratory harm caused by environmental nanoparticles exposure.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

暂无数据