4.7 Article

Activation mode dependent {10-12} twinning characteristics in a polycrystalline magnesium alloy

期刊

SCRIPTA MATERIALIA
卷 62, 期 4, 页码 202-205

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.scriptamat.2009.10.027

关键词

Magnesium alloy; {10-12} Extension twinning; Twin variant; Schmid factor

资金

  1. POSCO
  2. RIST
  3. Korea Research Council of Fundamental Science and Technology (KRCF)

向作者/读者索取更多资源

The {1 0 -1 2} extension twinning characteristics of magnesium alloys were found to be significantly influenced by the activation mode: tension parallel to the c-axis of the hexagonal close-packed unit cell or compression perpendicular to the c-axis. The Schmid factor criterion was successfully used to explain the activation of {1 0 -1 2} extension twin variants and its related twin morphology and texture evolution for each activation mode. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Influence of Microstructure on Low-Cycle and Extremely-Low-Cycle Fatigue Resistance of Low-Carbon Steels

Kyungmin Noh, Seyed Amir Arsalan Shams, Wooyeol Kim, Jae Nam Kim, Chong Soo Lee

Summary: The study aimed to analyze the effects of microstructure on the resistance of low-carbon steels to low-cycle fatigue and extremely low-cycle fatigue (ELCF). Different microstructures showed different fatigue resistance properties, with ferrite-pearlite performing best in ELCF resistance and ferrite-bainite-martensite exhibiting higher ELCF resistance when considering tensile strength.

METALS AND MATERIALS INTERNATIONAL (2021)

Article Nanoscience & Nanotechnology

Enhancing low-cycle fatigue life of commercially-pure Ti by deformation at cryogenic temperature

Geonhyeong Kim, Seyed Amir Arsalan Shams, Jae Nam Kim, Jong Woo Won, Seong Woo Choi, Jae Keun Hong, Chong Soo Lee

Summary: The low-cycle fatigue behavior of a cryogenic-rolled commercially pure titanium alloy was investigated, showing that increasing the volume fraction of deformation twins through pre-deformation significantly improved the low-cycle fatigue resistance. The formation of smaller dislocation cells in the pre-deformed microstructure led to more severe crack arrest.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2021)

Article Materials Science, Multidisciplinary

Effect of Type-B liquid metal embrittlement cracks on high-cycle fatigue properties of spot-welded 1180 TRIP steel

Gyeong Hyeon Jang, Kitae Kwon, Wooyeol Kim, Sangho Uhm, Taekyung Lee, Chong Soo Lee

Summary: The study found that Type-B liquid metal embrittlement (LME) cracks did not affect the high-cycle fatigue resistance of spot-welded TRIP steel plates, with the crack initiation site remaining unchanged at the sample notch.

SCIENCE AND TECHNOLOGY OF WELDING AND JOINING (2021)

Article Chemistry, Physical

Effect of tempering duration on hydrogen embrittlement of vanadium-added tempered martensitic steel

Hyun Joo Seo, Jae Nam Kim, Jang Woong Jo, Chong Soo Lee

Summary: This paper quantified the effect of tempering duration on the hydrogen embrittlement resistance of vanadium-added tempered martensitic steel. The study showed that characteristics of V-carbide greatly affect the HE resistance, with the greatest resistance observed at the peak aging condition of 4 hours.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2021)

Article Materials Science, Multidisciplinary

Effect of type-C liquid metal embrittlement on mechanical properties of spot-welded TRIP steel

Kitae Kwon, Gyeonghyeon Fang, Wooyeol Kim, Sangho Uhm, Taekyung Lee, Chong Soo Lee

Summary: Type-C liquid metal embrittlement (LME) cracks affect the high-cycle fatigue resistance of TRIP steel joined using resistance spot welding (RSW), with varying impacts on tensile behavior in different deformation modes.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2021)

Article Nanoscience & Nanotechnology

Microstructural evolution and mechanical properties of nanocrystalline Fe-Mn-Al-C steel processed by high-pressure torsion

Gyeonghyeon Jang, Jae Nam Kim, Hakhyeon Lee, Taekyung Lee, Nariman Enikeev, Marina Abramova, Ruslan Z. Valiev, Hyoung Seop Kim, Chong Soo Lee

Summary: This study investigated the microstructural evolution and mechanical properties of Fe-Mn-Al-C steel with varying shear strain imposed by high-pressure torsion (HPT). Different initial grain sized steels were used, and it was found that an inverse Hall-Petch relation softening phenomenon occurred in the finest grained steel with the highest number of revolutions (10R) of HPT.TEM observation showed the absence of deformation twins and the formation of numerous tilt/twist nanocrystalline boundaries which may explain the softening behavior in this regime.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2021)

Correction Multidisciplinary Sciences

Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy (vol 11, 2736 , 2020)

Nhung Thi-Cam Nguyen, Peyman Asghari-Rad, Praveen Sathiyamoorthi, Alireza Zargaran, Chong Soo Lee, Hyoung Seop Kim

NATURE COMMUNICATIONS (2022)

Article Materials Science, Multidisciplinary

Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy

Seyed Amir Arsalan Shams, Jae Wung Bae, Jae Nam Kim, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee

Summary: This study investigated the deformation behaviors and microstructural evolutions of an interstitial metastable high-entropy alloy under monotonic and cyclic deformation modes. The presence of carbon and the appearance of deformation-induced epsilon-martensite were found to contribute to the superior combination of strength and ductility in the alloy. The microstructure of the alloy varied between coarse-grained and fine-grained depending on the deformation mode. The strain amplitude also influenced the fatigue life of the alloy.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2022)

Article Nanoscience & Nanotechnology

Interface characteristics and mechanical behavior of additively manufactured multi-material of stainless steel and Inconel

Man Jae Sagong, Eun Seong Kim, Jeong Min Park, Gangaraju Manogna Karthik, Byeong-Joo Lee, Jung-Wook Cho, Chong Soo Lee, Takayoshi Nakano, Hyoung Seop Kim

Summary: Recently, direct energy deposition (DED) has gained attention in metal additive manufacturing for its ability to produce multi-materials and composition gradient materials with geometrical design freedom and high productivity. This study used DED processing to fabricate layered multi-materials of austenitic stainless steel (SS316L) and nickel-based superalloy (IN718). The resulting multi-materials exhibited a 500 μm thick composition gradient material zone (CGZ) at the SS316L/IN718 interface due to dilution. Fine cracks containing brittle phases were observed in the CGZ closer to the SS316L side. Despite the cracks, the multi-material samples showed higher yield strength and ultimate tensile strength than those predicted by rule-of-mixtures, attributed to hetero-deformation-induced hardening near the CGZ.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Nanoscience & Nanotechnology

Low-cycle fatigue behavior and surface treatment of a twinning-induced plasticity high-entropy alloy

Seyed Amir Arsalan Shams, Gyeonghyeon Jang, Jae Wung Bae, Auezhan Amanov, Hyoung Seop Kim, Taekyung Lee, Chong Soo Lee

Summary: The low-cycle fatigue life and cyclic deformation behavior of a metastable high-entropy alloy were investigated. The effects of ultrasonic nanocrystal surface modification (UNSM) process on tensile properties and fatigue life were evaluated. The study found that the fatigue life of the alloy was comparable to that of CoCrFeMnNi alloy, and mechanical twins in cyclic loads appeared only at high strain amplitudes. Additionally, while the UNSM process increased the yield strength of the alloy, it also accelerated fatigue crack initiation and degraded fatigue crack growth resistance.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Nanoscience & Nanotechnology

Increasing the resistance to hydrogen embrittlement in martensitic steel by partial phase transformation and tempering

Jang Woong Jo, Jae Nam Kim, Chong Soo Lee

Summary: This paper presents a method to increase the hydrogen-embrittlement resistance of martensite steel using partial phase transformation and tempering. The resulting dual-tempered martensitic (DTM) steel showed higher HE resistance and strength compared to conventional tempered martensite (TM) due to the presence of specific precipitates.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Materials Science, Multidisciplinary

Heterogeneous-structured Ti-6Al-4V with enhanced mechanical properties in monotonic and cyclic deformation modes

Geonhyeong Kim, Taekyung Lee, Seyed Amir Arsalan Shams, Jae Nam Kim, Seong Woo Choi, Jae Keun Hong, Chong Soo Lee

Summary: This study developed a heterogeneous-structured (HS) Ti-6Al-4V alloy composed of coarse and fine grains to enhance mechanical properties. The HS alloy had higher strength and better resistance to low-cycle fatigue compared to a commercial mill-annealed coarse-grained (CG) alloy, while also maintaining ductility. It offered an engineering advantage of low-cost mass production compared to an ultrafine-grained (UFG) counterpart. The enhanced mechanical properties of the HS alloy were attributed to the presence of an ultrafine-grained region and partial transformation of texture.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Nanoscience & Nanotechnology

The astonishing effect of Si addition on low-cycle fatigue life in a metastable high-entropy alloy

Seyed Amir Arsalan Shams, Geonhyeong Kim, Chong Soo Lee, Hyoung Seop Kim, Hamid Reza Jafarian

Summary: The effect of Si content on the tensile and cyclic deformation behavior of Fe50-xMn30Co10Cr10Six (x = 0-6) as a metastable high-entropy alloy was studied. The tensile properties and deformation mechanisms were not significantly affected by Si content up to 4 at.%, but the cyclic deformation behavior was sensitive to Si content. The addition of Si facilitated the γ to ε-martensite phase transformation and resulted in fatigue lives of more than 10000 cycles at a strain amplitude of 0.7%.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Crystallography

Hetero-Deformation Induced Hardening in a CoCrFeNiMn High-Entropy Alloy

Hamed Shahmir, Parham Saeedpour, Mohammad Sajad Mehranpour, Seyed Amir Arsalan Shams, Chong Soo Lee

Summary: One important issue in materials science is the balance between strength and ductility in engineering alloys, and creating heterogeneous and complex microstructures is an effective method to achieve this. In this study, a CoCrFeNiMn high-entropy alloy was processed through cold rolling and post-deformation annealing at temperatures ranging from 650-750 degrees C, resulting in a wide range of grain sizes. Annealing at 650 degrees C produced a heterogeneous structure with recrystallized areas of ultrafine and fine grains and non-recrystallized areas with an average size of around 75 μm. The processed material exhibited a combination of high strength (over 1 GPa) and uniform elongation (over 12%), which was attributed to different deformation mechanisms such as dislocation slip, deformation twinning, and hetero-deformation-induced hardening. Increasing the annealing temperature to 700 degrees C allowed for the acquisition of bimodal grain size distributions (around 1.5 and 6 μm), while annealing at higher temperatures eliminated the heterogeneous structure and led to a significant decrease in strength.

CRYSTALS (2023)

Article Materials Science, Multidisciplinary

Enhanced kinetics of microstructural evolution in Ti-6Al-4V through electropulsing treatment

Minseob Kim, Seong Ho Lee, Jinyeong Yu, Seho Cheon, Sujeong Byun, Chong Soo Lee, Taekyung Lee

Summary: This study investigated the microstructural kinetics induced by electropulsing treatment (EPT) of Ti-6Al-4V alloy and found that EPT enhances several aspects of microstructural evolution, leading to improved mechanical performance.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Nanoscience & Nanotechnology

High dielectric temperature stability in the relaxor ferroelectric thin films via using a multilayer heterostructure

Jie Zhang, Xiaoyang Chen, MingJian Ding, Jiaqiang Chen, Ping Yu

Summary: This study enhances the compositional inhomogeneity of relaxor ferroelectric thin films to improve their dielectric temperature stability. The prepared films exhibit a relatively high dielectric constant and a very low variation ratio of dielectric constant over a wide temperature range.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

A rational proton compensation strategy of polyaniline-MnO2 hybrid structure for promoting dual ion storage of Zn-ion battery

Xiaoyu Chen, Ranran Zhang, Hao Zou, Ling Li, Qiancheng Zhu, Wenming Zhang

Summary: Polyaniline-manganese dioxide composites exhibit high conductivity, long discharge platform, and stable circulation, and the specific capacity is increased by providing additional H+ ions to participate in the reaction.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

High-resolution reconstruction-based investigation of multi-scale lamellar microstructures by coupled crystal plasticity and in-situ experiment

Xutao Huang, Yinping Chen, Jianjun Wang, Gang Lu, Wenxin Wang, Zan Yao, Sixin Zhao, Yujie Liu, Qian Li

Summary: This study aims to establish a novel approach to better understand and predict the behavior of materials with multi-scale lamellar microstructures. High-resolution reconstruction and collaborative characterization methods are used to accurately represent the microstructure. The mechanical properties of pearlite are investigated using crystal plasticity simulation and in-situ scanning electron microscopy tensile testing. The results validate the reliability of the novel strategy.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Planar fault transformation and unfaulting of interstitial dislocation loops in irradiated L12-Ni3Al

Cheng Chen, Fanchao Meng, Jun Song

Summary: This study systematically investigated the unfaulting mechanism of single-layer interstitial dislocation loops in irradiated L12-Ni3Al. The unfaulting routes of the loops were uncovered and the symmetry breaking during the unfaulting processes was further elucidated. A continuum model was formulated to analyze the energetics of the loops and predict the unfaulting threshold.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

On the co-nucleation of adjoining twin pairs at grain boundaries in hexagonal close-packed materials

Darshan Bamney, Laurent Capolungo

Summary: This work investigates the formation of adjoining twin pairs (ATPs) at grain boundaries (GBs) in hexagonal close-packed (hcp) metals, focusing on the co-nucleation (CN) of pairs of deformation twins. A continuum defect mechanics model is proposed to study the energetic feasibility of CN of ATPs resulting from GB dislocation dissociation. The model reveals that CN is preferred over the nucleation of a single twin variant for low misorientation angle GBs. Further analysis considering GB character and twin system alignment suggests that CN events could be responsible for ATP formation even at low m' values.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Sharp/diffuse antiferroelectric-ferroelectric phase transition regulated by atomic displacement ordering

Bing Han, Zhengqian Fu, Guoxiang Zhao, Xuefeng Chen, Genshui Wang, Fangfang Xu

Summary: This study investigates the behavior of electric-field induced antiferroelectric to ferroelectric (AFE-FE) phase transition and reveals the evolution of atomic displacement ordering as the cause for the transition behavior changing from sharp to diffuse. The novel semi-ordered configuration results from the competing interaction between long-range displacement modulation and compositional inhomogeneity, which leads to a diffuse AFE-FE transition while maintaining the switching field.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Size-effects in tensile fracture of rejuvenated and annealed metallic glass

Akib Jabed, Golden Kumar

Summary: This study demonstrates that cryogenic rejuvenation promotes homogeneous-like flow and increases ductility in metallic glass samples. Conversely, annealing has the opposite effect, resulting in a smoother fracture surface.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Heterogeneous distribution of isothermal ω precipitates prevents brittle fracture in aged β-Ti alloys

Xin Ji, Yan Chong, Satoshi Emura, Koichi Tsuchiya

Summary: A heterogeneous microstructure in Ti-15Mo-3Al alloy with heterogeneous distributions of Mo element and omega(iso) precipitates has achieved a four-fold increase in tensile ductility without a loss of tensile strength, by blocking the propagation of dislocation channels and preventing the formation of micro-cracks.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Machine-learning-aided density functional theory calculations of stacking fault energies in steel

Amit Samanta, Prasanna Balaprakash, Sylvie Aubry, Brian K. Lin

Summary: This study proposes a combined large-scale first principles approach with machine learning and materials informatics to quickly explore the chemistry-composition space of advanced high strength steels (AHSS). The distribution of aluminum and manganese atoms in iron is systematically explored using first principles calculations to investigate low stacking fault energy configurations. The use of an automated machine learning tool, DeepHyper, speeds up the computational process. The study provides insights into the distribution of aluminum and manganese atoms in systems containing stacking faults and their effects on the equilibrium distribution.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

A physics-constrained neural network for crystal plasticity modelling of FCC materials

Guowei Zhou, Yuanzhe Hu, Zizheng Cao, Myoung Gyu Lee, Dayong Li

Summary: In this work, a physics-constrained neural network is used to predict grain-level responses in FCC material by incorporating crystal plasticity theory. The key feature, shear strain rate of slip system, is identified based on crystal plasticity and incorporated into the loss function as physical constitutive equations. The introduction of physics constraints accelerates the convergence of the neural network model and improves prediction accuracy, especially for small-scale datasets. Transfer learning is performed to capture complex in-plane deformation of crystals with any initial orientations, including cyclic loading and arbitrary non-monotonic loading.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Lanthanum and tungsten co-doped ruthenium dioxide for fresh/sea-water alkaline hydrogen evolution reaction

Pengfei Yang, Qichang Li, Zhongying Wang, Yuxiao Gao, Wei Jin, Weiping Xiao, Lei Wang, Fusheng Liu, Zexing Wu

Summary: In this study, the HER performance of Ru-based catalysts is significantly improved through the dual-doping strategy. The obtained catalyst exhibits excellent performance in alkaline freshwater and alkaline seawater, and can be stably operated in a self-assembled overall water splitting electrolyzer.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Five-fold twin structures in sputter-deposited nickel alloy films

Ilias Bikmukhametov, Garritt J. Tucker, Gregory B. Thompson

Summary: Depositing a Ni-1at. % P film can facilitate the formation of multiple quintuple twin junctions, resulting in a five-fold twin structure and a pentagonal pyramid surface topology. The ability to control material structures offers opportunities for creating novel surface topologies, which can be used as arrays of field emitters or textured surfaces.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Explainable predictions of multi-component oxides enabled by attention-based neural networks

Zening Yang, Weiwei Sun, Zhengyu Sun, Mutian Zhang, Jin Yu, Yubin Wen

Summary: Multicomponent oxides (MCOs) have wide applications and accurately predicting their thermal expansion remains challenging. This study introduces an innovative attention-based deep learning model, which achieves improved performance by using two self-attention modules and demonstrates adaptability and interpretability.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Relating the combinatorial materials chip mapping to the glass-forming ability of bulk metallic glasses via diffraction peak width

Ze Liu, Cai Chen, Yuanxun Zhou, Lanting Zhang, Hong Wang

Summary: This study attempts to address the gap in cooling rates between thin film deposition and bulk metallic glass (BMG) casting by correlating the glass-forming range (GFR) determined from combinatorial materials chips (CMCs) with the glass-forming ability (GFA) of BMG. The results show that the full-width at half maximum (FWHM) of the first sharp diffraction peak (FSDP) is a good indicator of BMG GFA, and strong positive correlations between FWHM and the critical casting diameter (Dmax) are observed in various BMG systems. Furthermore, the Pearson correlation coefficients suggest possible similarities in the GFA natures of certain BMG pairs.

SCRIPTA MATERIALIA (2024)

Article Nanoscience & Nanotechnology

Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys

Mike Schneider, Jean-Philippe Couzinie, Amin Shalabi, Farhad Ibrahimkhel, Alberto Ferrari, Fritz Koermann, Guillaume Laplanche

Summary: This work aims to predict the microstructure of recrystallized medium and high-entropy alloys, particularly the density and thickness of annealing twins. Through experiments and simulations, a database is provided for twin boundary engineering in alloy development. The results also support existing theories and empirical relationships.

SCRIPTA MATERIALIA (2024)