4.5 Article

Regulation of Ras Localization by Acylation Enables a Mode of Intracellular Signal Propagation

期刊

SCIENCE SIGNALING
卷 3, 期 140, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.20001370

关键词

-

向作者/读者索取更多资源

Growth factor stimulation generates transient H-Ras activity at the plasma membrane but sustained activity at the Golgi. Two overlapping regulatory networks control compartmentalized H-Ras activity: the guanosine diphosphate-guanosine triphosphate cycle and the acylation cycle, which constitutively traffics Ras isoforms that can be palmitoylated between intracellular membrane compartments. Quantitative imaging of H-Ras activity after decoupling of these networks revealed regulation of H-Ras activity at the plasma membrane but not at the Golgi. Nevertheless, upon stimulation with epidermal growth factor, Ras activity at the Golgi displayed a pulse-like profile similar to that at the plasma membrane but also remained high after the initial stimulus. A compartmental model that included the acylation cycle and H-Ras regulation at the plasma membrane accounted for the pulse-like profile of H-Ras activity at the Golgi but implied that sustained H-Ras activity at the Golgi required H-Ras activation at an additional compartment, which we experimentally determined to be the endoplasmic reticulum. Thus, in addition to maintaining the localization of Ras, the acylation cycle underlies a previously unknown form of signal propagation similar to radio transmission in its generation of a constitutive Ras carrier wave that transmits Ras activity between subcellular compartments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据