4.7 Article

Optimal set of electrode potential enhances the toxicity response of biocathode to formaldehyde

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 644, 期 -, 页码 1485-1492

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.07.114

关键词

Microbial fuel cell; Biocathode; Electrode potential; Toxicity response; Microbial community

资金

  1. Tianjin Research Program of Application Foundation and Advanced Technology [18JCZDJC39400]
  2. National Natural Science Foundation of China [21577068]
  3. Fundamental Research Funds for the Central Universities [C029188008]

向作者/读者索取更多资源

The autotrophic biocathode was promising as a broad spectrum, rapid-responding and sensitive sensing element for the early warning of toxicants in water. However, we found that the baseline current and the responsivity strongly relied on the cathode potential. Here we poised cathode potentials at 0, -0.2 and -0.4 V to investigate the effect of electrode potential on the sensor responsivity. With formaldehyde as the tested toxicant, the biocathode poised at -0.2 V had the highest baseline current (118.2 +/- 10.7 A m(-2)) and the lowest toxicity response concentration (0.00148%), which exhibited a 6-64 times higher response ratio (1.4 x 10(4) A%(-1) m(-3)) than those controlled at 0 V (2.3 x 10(3) A%(-1) m(-3)) and -0.4 V (2.2 x 10(2) A%(-1) m(-3)). First derivative of cyclic voltammetries revealed that the biocathode acclimated at -0.2 V had a highest main peak centered at 0.301 +/- 0.006 V and several minor peaks between -0.2 to 0.2 V. Bacterial community analysis showed that Proteobacteria and Bacteroidetes families closely related to the sensing performance. Interestingly, Nitrospirae was obviously acclimated at -0.2 V, indicating that bacteria belonging to this phylum possibly contributed to the highest responsivity as well. Our findings revealed that the optimal set of electrode potential was critical to promote the toxicity responses of biocathode to the formaldehyde, and the differences were mainly from the microbial communities selected by different cathode potentials. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据